Paleontological Journal

, Volume 52, Issue 14, pp 1655–1662 | Cite as

Genomic-Morphogenetic Correlations and Evolutionary Trajectories of Bilateria

  • V. V. IsaevaEmail author


Comparative genomics helps to link characteristics of the genome and evolutionary trajectories by revealing the genomic correlates of morphological complexity and differences in the body plans of multicellular animals. Comparison of the organization of Hox clusters and expression of Hox genes with organismal morphology allows the emergence of macroevolutionary innovations as changes in morphogenesis and body plan of Bilateria, depending on the pattern of Hox code to be traced. We examine a correlation node that includes various types of organization of clustered (initially) Hox genes, early embryogenesis type, cellular developmental resources, thereby determining alternative evolutionary trajectories of various Bilateria taxa. Biological diversity inevitably manifests itself at all levels of organization and all stages of the evolution of the animal world, and therefore the reduction of the evolutionary strategies of Bilateria, and, moreover, all Metazoa, to a few simplified versions is impossible.


genomic correlation Hox genes evolution of Bilateria 



  1. 1.
    Aboobaker, A.A. and Blaxter, M.L., The nematode story: Hox gene loss and rapid evolution, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., New York: Springer Science+Business Media, LLC Landes Bioscience, 2010, pp. 101–110.Google Scholar
  2. 2.
    Albertin, C.B., Simakov, O., Mitros, T., Wang, Z.Y., Pungor, J.R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C.W., and Rokhsar, D.S., The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 2015, vol. 524, no. 7564, pp. 220–224.CrossRefGoogle Scholar
  3. 3.
    Arnone, M.I., Byrne, M., and Martínez, P., Echinodermata, in Evolutionary Developmental Biology of Invertebrates, vol. 6: Deuterostomia, Wanninger, A., Ed., Vienna: Springer-Verlag, 2015, pp. 1–58.Google Scholar
  4. 4.
    Beloussov, L.V., Self-organization, symmetry and morphomechanics in development of organisms, in Embryology—Updates and Highlights on Classic Topics, Pereira, L.A.V., Ed., Rijeka, Croatia: InTech, 2012, pp. 189–210.Google Scholar
  5. 5.
    Beloussov, L.V., Morphomechanics of Development, Heidelberg: Springer Science+Business Media, 2015.Google Scholar
  6. 6.
    Berrill, N.J., The determination of size, in Analysis of Development, Willier, B.H., Weiss, P., and Hamburger, V., Eds., Philadelphia: Saunders, 1955, pp. 620–630.Google Scholar
  7. 7.
    Berrill, N.J., Growth, Development, and Pattern, San Francisco: Freeman, 1961.Google Scholar
  8. 8.
    Cameron, R.A. and Davidson, E.H., A basal deuterostome genome viewed as a natural experiment, Gene, 2007, vol. 406, nos. 1–2, pp. 1–7.CrossRefGoogle Scholar
  9. 9.
    Cameron, R.A., Rowen, L., Nesbitt, R., Bloom, S., Rast, J.P., Berney, K., Arenas-Mena, C., Martínez, P., Lucas, S., Richardson, P.M., Davidson, E.H., Peterson, K.J., and Hood, L., Unusual gene order and organization of the sea urchin Hox cluster, J. Exp. Zool. B Mol. Dev. Evol., 2006, vol. 306, no. 1, pp. 45–47.CrossRefGoogle Scholar
  10. 10.
    Carey, N., Junk DNA: A Journey Through the Dark Matter of the Genome, Columbia Univ. Press, 2015.CrossRefGoogle Scholar
  11. 11.
    Carroll, S.B., Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution, Cell, 2008, vol. 134, no. 1, pp. 25–36.CrossRefGoogle Scholar
  12. 12.
    Conklin, E.G., Mosaic development in ascidian eggs, J. Exp. Zool., 1905, vol. 2, no. 2, pp. 145–223.CrossRefGoogle Scholar
  13. 13.
    David, B. and Mooi, R., How Hox genes can shed light on the place of echinoderms among the deuterostomes, EvoDevo, 2014, vol. 5, no. 1, p. 22. Cited 2014.Google Scholar
  14. 14.
    Davies, J., Mechanisms of Morphogenesis, Amsterdam: Elsevier, 2013, 2nd ed.Google Scholar
  15. 15.
    Deutsch, J.S. and Mouchel-Vielh, E., Hox genes and the crustacean body plan, BioAssays, 2003, vol. 25, no. 9, pp. 878–887.CrossRefGoogle Scholar
  16. 16.
    Duboule, D., Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony, Development, Suppl. 1994, pp. 135–142.Google Scholar
  17. 17.
    Duboule, D., The rise and fall of Hox gene clusters, Development, 2007, vol. 134, no. 14, pp. 2549–2560.CrossRefGoogle Scholar
  18. 18.
    Dunn, C.W. and Ryan, J.F., The evolution of animal genomes, Curr. Opin. Genet. Devel., 2015, vol. 35, pp. 25–32.CrossRefGoogle Scholar
  19. 19.
    Erwin, D.H. and Valentine, J.W., The Cambrian Explosion: The Construction of Animal Biodiversity, Greenwood Village, CO: Roberts and Co., 2013.Google Scholar
  20. 20.
    Ferrier, D.E.K., Evolution of homeobox gene clusters in animals: The Giga-cluster and primary vs. secondary clustering, Front. Ecol. Evol., 2016, vol. 4. 2016|Volume4|Article36. Cited April 14, 2016.Google Scholar
  21. 21.
    Garcia-Fernández, J., Hox, ParaHox, ProtoHox: facts and guesses, Heredity (Edinb.), 2005, vol. 94, no. 2, pp. 145–152.CrossRefGoogle Scholar
  22. 22.
    Géant, E., Mouchel-Vielh, E., Coutanceau, J.-P., Ozouf-Costaz. C, and Deutsch, J.S., Are cirripedia hopeful monsters? Cytogenetic approach and evidence for a Hox gene cluster in the cirripede crustacean Sacculina carcini, Dev. Gen. Evol., 2006, vol. 216, nos. 7–8, pp. 443–449.CrossRefGoogle Scholar
  23. 23.
    Gonçalves e Silva, F.C., Evolutionary genomics: Study of genes involved in animal adaptation, A proposal submitted to Faculty of Sciences of the University of Porto for fulfillment of degree of master of Biochemistry, Porto: Universidade do Porto, 2015, pp. 1–41.Google Scholar
  24. 24.
    Halanych, K.M., How our view of animal phylogeny was reshaped by molecular approaches: lessons learned, Org. Divers. Evol., 2016, vol. 16, no. 2, pp. 319–328.CrossRefGoogle Scholar
  25. 25.
    Holland, L.Z., Tunicates, Curr. Biol., 2016, vol. 26, no. 4, pp. R146–R152.CrossRefGoogle Scholar
  26. 26.
    Holland, P.W.H., Evolution of homeobox genes, WIREs Dev. Biol., 2013, vol. 2, no. 1, pp. 31–45.Google Scholar
  27. 27.
    Holland, P.W.H., Did homeobox gene duplications contribute to the Cambrian explosion?, Zool. Lett., 2015, 1:1. doi 10.1186/s40851-014-0004-xCrossRefGoogle Scholar
  28. 28.
    Ikuta, T., Evolution of invertebrate Deuterostomes and Hox/ParaHox genes, Genom. Proteom. Bioinform., 2011, vol. 9, no. 3, pp. 77–96.CrossRefGoogle Scholar
  29. 29.
    Isaeva, V.V., Heterochronies, heterotopies, and cell resources of development in ontogenetic and evolutionary transformation, Paleontol. J., 2015, vol. 49, no. 14, pp. 1530–1537.CrossRefGoogle Scholar
  30. 30.
    Isaeva, V.V., Evolutionary gains and losses in Bilateria, Paleontol. J., 2016, vol. 50, no. 13, pp. 1477–1485.CrossRefGoogle Scholar
  31. 31.
    Isaeva, V.V. and Golubev, A.G., Tunicates, our closest invertebrate relatives, Biosfera, 2017, vol. 9, no. 3, pp. 242–260.Google Scholar
  32. 32.
    Isaeva, V.V., Kasyanov, N.V., and Presnov, E.V., Topological singularities and symmetry breaking in development, BioSystems, 2012, vol. 109, no. 3, pp. 280–298.CrossRefGoogle Scholar
  33. 33.
    Isaeva, V.V., Ozernyuk, N.D., and Rozhnov, S.V., Evidence for evolutionary changes in ontogeny: paleontological, comparative-morphological, and molecular aspects, Biol. Bull., 2013, vol. 40, no. 3, pp. 243–252.CrossRefGoogle Scholar
  34. 34.
    Ivanova-Kazas, O.M., Molecules, morphology, and phylogeny. Paleontol. J., 2016, vol. 50, no. 13, pp. 1474–1476.CrossRefGoogle Scholar
  35. 35.
    Ji Cheng-cheng, Wu Liang, Zhao Wen-chan, Wang Si-shuo, and Lv Jian-hao, Echinoderms have bilateral tendencies. PLoS ONE, 2012, vol. 7, no. 1. e28978. Cited 2012. doi 10.1371/journal.pone.0028978Google Scholar
  36. 36.
    Koonin, E.V., The Logic of Chance: The Nature and Origin of Bioloical Evolution, Upper Saddle River NJ: Pearson Education Inc., 2012.Google Scholar
  37. 37.
    Kulakova, M.A., Bakalenko, N.I., and Novikova, E.L., Heterotopies and heterochronies in the developmental programs under the control of the homeobox-containing gene cluster, in Morfogenez v individual’nom i istoricheskom razvitii: geterokhronii, geterotopii i allometriya (Morphogenesis in Individual and Historical Development: Heterochronies, Heterotopies, and Allometry), Rozhnov, S.V., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2014, pp. 17–32.Google Scholar
  38. 38.
    Lang, D. and Rensing, S.A., The evolution of transcriptional regulation in the viridiplantae and its correlation with morphological complexity, Evolutionary Transitions to Multicellular Life: Principles and Mechanisms, Ruiz-Trillo, I. and Nedelcu, A.M., Eds., Advances in Marine Genomics, vol. 2, Dordrecht, The Netherlands: Springer Science+Business Media, 2015, pp. 301–334.Google Scholar
  39. 39.
    Minelli, A., The Development of Animal Form: Ontogeny, Morphology, and Evolution, Cambridge: Cambridge Univ. Press, 2003.CrossRefGoogle Scholar
  40. 40.
    Minelli, A., Evodevo and its significance for animal evolution and phylogeny, Evolutionary Developmental Biology of Invertebrates, vol. 1: Introduction, Non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha, Wanninger, A., Ed., Wien: Springer, 2015, pp. 1–24.Google Scholar
  41. 41.
    Nakashima Keisuke, Yamada Lixy, Satou Yutaka, Azuma Jun-Ichi, and Satoh Nor, The evolutionary origin of animal cellulose synthase, Dev. Genes Evol., 2004, vol. 214, no. 2, pp. 81–88.CrossRefGoogle Scholar
  42. 42.
    Nielsen, C., Animal Evolution: Interrelationships of the Living Phyla, Oxford UK: Oxford Univ. Press, 2012, 3rd ed.Google Scholar
  43. 43.
    Ogura, T. and Busch, W., Genotypes, networks, phenotypes: Moving toward plant systems genetics, Annu. Rev. Cell Devel. Biol., 2016, vol. 32, pp. 103–126.CrossRefGoogle Scholar
  44. 44.
    Papageorgiou, S., The unusual gene order in the Echinoderm Hox cluster is related to the embryo and larva symmetries, bioRxiv 2015. doi 10.1101/016923. Cited 2015.Google Scholar
  45. 45.
    Pascual-Anaya, J., D’Aniello, S., Kuratani, S., and García-Fernández, J., Evolution of Hox gene clusters in deuterostomes, BMC Devel. Biol., 2013, vol. 13, p. 26. Cited 2013.Google Scholar
  46. 46.
    Peter, I.S. and Davidson, E.H., Evolution of gene regulatory networks controlling body plan development, Cell, 2011, vol. 144, no. 6, pp. 970–985.CrossRefGoogle Scholar
  47. 47.
    Peterson, K.J. and Eernisse, D.J., The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas, Org. Divers. Evol., 2016, vol. 16, no. 2, pp. 401–418.CrossRefGoogle Scholar
  48. 48.
    Popodi, E. and Raff, R.A., Hox genes in a pentameral animal, BioEssays, 2001, vol. 23, no. 3, pp. 211–214.CrossRefGoogle Scholar
  49. 49.
    Ryan, F., The Mysterious World of the Human Genome, London: Harper Collins, 2015.Google Scholar
  50. 50.
    Sagane, Y., Zech, K., Bouquet, J.-M., Schmid, M., Bal, U., and Thompson, E.M., Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans, Development, 2010, vol. 137, no. 9, pp. 1483–1492.CrossRefGoogle Scholar
  51. 51.
    Sánchez-Herrero, E., Hox targets and cellular functions, Scientifica, Volume 2013, Article ID 738257, 26 pages. Cited 2013. doi 10.1155/2013/738257Google Scholar
  52. 52.
    Satoh Noriyuki, Rokhsar, D., and Nishikawa Teruaki, Chordate evolution and the three-phylum system, Proc. R. Soc. B, 2014, vol. 281, no. 1729. Cited 2014. doi 10.1098/rspb.2014.1729Google Scholar
  53. 53.
    Schmidt-Nielsen, K., Scaling: Why Is Animal Size So Important?, New York: Cambridge Univ. Press, 1984.CrossRefGoogle Scholar
  54. 54.
    Sebé-Pedrós, A. and de Mendoza, A., Transcription factors and the origin of animal multicellularity, in Evolutionary Transitions to Multicellular Life. Principles and Mechanisms, Ruiz-Trillo, I. and Nedelcu, A.M, Eds., Advances in Marine Genomics, vol. 2, Dordrecht, The Netherlands: Springer Science+Business Media, 2015, pp. 379–394.Google Scholar
  55. 55.
    Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), Moscow–Leningrad: Akad. Nauk SSSR, 1939.Google Scholar
  56. 56.
    Simakov, O. and Kawashima, T., Independent evolution of genomic characters during major metazoan transitions, Transit. Devel. Biol., 2017, vol. 427, no. 2, pp. 179–192.CrossRefGoogle Scholar
  57. 57.
    Smith, A.B., Deuterostomes in a twist: the origins of a radical new body plan, Evol. Dev., 2008, vol. 10, no. 4, pp. 493–503.CrossRefGoogle Scholar
  58. 58.
    Sommer, R.J., Nematoda, Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., vol. 3: Ecdysozoa I: Non-Tetraconata, Wien: Springer, 2015, pp. 15–34.Google Scholar
  59. 59.
    Srivastava, M., A comparative genomics perspective on the origin of multicellularity and early animal evolution, in Evolutionary Transitions to Multicellular Life: Principles and Mechanisms, Ruiz-Trillo, I. and Nedelcu, A.M, Eds., Advances in Marine Genomics, vol. 2, Dordrecht, The Netherlands: Springer Science+Business Media, 2015, pp. 269–300.Google Scholar
  60. 60.
    Stolfi, A. and Brown, F.D., Tunicata, Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., vol. 6: Deuterostomia, Wien: Springer, 2015, pp. 135–204.Google Scholar
  61. 61.
    Technau, U., Genikhovich, G., and Kraus, J.E.M., Cnidaria, Evolutionary Developmental Biology of Invertebrates, Wanninger, A. Ed., vol. 1: Introduction, Non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha, Wien: Springer, 2015, pp. 115–163.Google Scholar
  62. 62.
    Tschopp, P. and Duboule, D., A genetic approach to the transcriptional regulation of Hox gene clusters, Annu. Rev. Genet., 2011, vol. 45, pp. 145–166.CrossRefGoogle Scholar
  63. 63.
    Wanninger, A., Twenty years into the “new animal phylogeny” changes and challenges, Org. Divers. Evol., 2016, vol. 16, no. 2, pp. 315–318.CrossRefGoogle Scholar
  64. 64.
    Wanninger, A. and Wollesen, T., Mollusca, Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., vol. 2: Lophotrochozoa (Spiralia), Wien: Springer, 2015, pp. 103–153.Google Scholar
  65. 65.
    Zandvakili, A. and Gebelein, B., Mechanisms of specificity for Hox factor activity, J. Dev. Biol., 2016, vol. 4, no. 2, p. 16. doi 10.3390/jdb4020016CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of ScienceMoscowRussia
  2. 2.National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations