Advertisement

Paleontological Journal

, Volume 52, Issue 14, pp 1679–1696 | Cite as

Morphogenesis and Evolution of the Blastopore

  • V. G. CherdantsevEmail author
  • E. G. Korvin-Pavlovskaya
Article

Abstract

The blastopore evolution is considered as a model example of the evolution of morphogenesis mechanism based on dipole interactions between the sources and sinks of epithelial sheet surface energy. The blastopore arises as a singular point of the vector field movement of a spherical surface having a zero velocity of the planar flow being surrounded by a toroidal surface (“border torus,” BT). The BT domain is the region of maximum difference in the planar surface flow velocity and, as a consequence, of maximum variability of the gastrulation movements. The evolution of gastrulation begins with the blastopore closure and continues through the formation of intercalary developmental stages that precede this closure leading to an increase in the blastopore diameter (retrograde evolution). Only three types of robust sink/source distributions at the BT surface are feasible irrespective to their phylogenetic origin. First, it is the “unilateral” gastrulation of Lophotrochozoa with the source and sinks at two opposite BT poles and two bilaterally symmetrical flows along BT. Then, it is the “bilateral” gastrulation of Ecdysozoa with two bilaterally symmetrical surface sources and two sinks at the opposite blastopore poles. Thirdly, it is the “radial” gastrulation of Deuterostomia including Chordates: one of the BT poles is a sink of the surface coming from two sources: from the outer BT surface adjacent to the sink and from the opposite pole of the BT circumference. In the evolution of the blastopore of chordates from the lancelet to amniotes, it is possible to trace the gradual replacement of gastrulation movements with pre-gastrulation cellular flows due to fixation of heterochronies, set out in the normal variability of morphogenesis. Since the variability of structures is reduced as they are formed, the evolution uses variability of earlier developmental stages.

Keywords:

morphogenesis evolution blastopore gastrulation 

Notes

REFERENCES

  1. 1.
    Alev, C., Wu, Y., Nakaya, Y., and Sheng, G., Decoupling of amniote gastrulation and streak formation reveals a morphogenetic unity in vertebrate mesoderm induction, Development, 2013, vol. 140, pp. 2691–2696.CrossRefGoogle Scholar
  2. 2.
    Angerer, L.M., Yaguchi, S., Angerer, R.C., and Burke, R.D., The evolution of nervous system patterning: Insights from sea urchin development, Development, 2011, vol. 138, pp. 3613–3623.CrossRefGoogle Scholar
  3. 3.
    Arendt, D. and Nübler-Jung, K., Dorsal or ventral: Similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates, Mech. Dev., 1997, vol. 61, pp. 7–21.CrossRefGoogle Scholar
  4. 4.
    Arendt, D. and Nübler-Jung, K., Rearranging gastrulation in the name of yolk: Evolution of gastrulation in yolk-rich amniote eggs, Mech. Dev., 1999, vol. 81, pp. 3–22.CrossRefGoogle Scholar
  5. 5.
    Arnold, V.I., Matematicheskie metody klassicheskoi mekhaniki (Mathematical Methods of Classical Mechanics), Moscow: Nauka, 1989.Google Scholar
  6. 6.
    Arnold, V.I., Myagkie i zhestkie modeli (Soft and Rigid Models), Moscow: MTsNMO, 2004.Google Scholar
  7. 7.
    Behrndt, M., Salbreux, G., Campinho, P., Hauschild, R., Oswald, F., Roensch, J., Grill, S.W., and Heisenberg, C.P., Forces driving epithelial spreading in zebrafish gastrulation, Science, 2012, vol. 12, pp. 257–260.CrossRefGoogle Scholar
  8. 8.
    Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Fundamentals of Comparative Anatomy of Invertebrates), Moscow: Nauka, 1964, vol. 1.Google Scholar
  9. 9.
    Belintsev, B.N., Fizicheskie osnovy formoobrazovaniya (Physical Bases of Morphogenesis), Moscow: Nauka, 1990.Google Scholar
  10. 10.
    Beloussov, L.V., Biologicheskii morfogenez (Biological Morphogenesis), Moscow: Mosk. Gos. Univ., 1987.Google Scholar
  11. 11.
    Beloussov, L.V., Morphogenesis as a macroscopic self-organizing process, BioSystems, 2012, vol. 109, pp. 262–279.CrossRefGoogle Scholar
  12. 12.
    Bertranda, S., Camassesa, A., Somorjaia, I., Belgacema, M.R., Chabrolb, O., Escandea, M.L., Pontarottib, P., and Escriva, H., Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 9160–9165.CrossRefGoogle Scholar
  13. 13.
    Blankenship, J., Backovic, S., Sanny, J., Weitz, O., and Zallen, J., Multicellular rosette formation links planar cell polarity to tissue morphogenesis, Dev. Cell, 2006, vol. 11, pp. 459–470.CrossRefGoogle Scholar
  14. 14.
    Bruce, A.E.E., Zebrafish epiboly: Spreading thin over the yolk, Dev. Dyn., 2016, vol. 245, pp. 244–258.CrossRefGoogle Scholar
  15. 15.
    Brunet, T., Bouclet, A., Ahmadi, P., Mitrossilis, D., Driquez, B., Brunet, A.C., Henry, L., Serman, F., Béalle, G., Ménager, C., Dumas-Bouchiat, F., Givord, D., Yanicostas, C., Le-Roy, D., Dempsey, N.M., Plessis, A., and Farge, E., Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria, Nature, 2013, vol. 4, pp. 2821–2830.Google Scholar
  16. 16.
    Cherdantsev, V.G., Morfogenez i evolyutsiya (Morphogenesis and Evolution), Moscow: KMK, 2003.Google Scholar
  17. 17.
    Cherdantsev, V.G., The dynamic geometry of mass cell movements in animal morphogenesis, Int. J. Dev. Biol., 2006, vol. 50, pp. 169–182.CrossRefGoogle Scholar
  18. 18.
    Cherdantsev, V.G., Generic oscillation patterns of the developing system and their role in the origin and evolution of ontogeny, Biosystems, 2014, vol. 123, pp. 27–53.CrossRefGoogle Scholar
  19. 19.
    Cherdantsev, V.G. and Grigorieva, O.V., Morphogenesis of active shells, BioSystems, 2012, vol. 110, pp. 314–328.CrossRefGoogle Scholar
  20. 20.
    Cherdantsev, V.G. and Grigorieva, O.V., Developmental canalization with no part of stabilizing selection, Paleontol. J., 2016, vol. 50, pp. 20–32.CrossRefGoogle Scholar
  21. 21.
    Cherdantsev, V.G. and Korvin-Pavlovskaya, E.G., Variability of quantitative morphogenetic parameters during early morphogenesis of the loach, Missgurnus fossilis L., Russ. J. Dev. Biol., 2016, vol. 47, pp. 49.CrossRefGoogle Scholar
  22. 22.
    Cherdantsev, V.G., Kreslavsky, A.G., and Severtsov, A.S., Episelective evolution, in Evolutionary Theory, Van Valen, Ed., 1996, vol. 11, pp. 69–87.Google Scholar
  23. 23.
    Cherdantsev, V.G. and Scobeyeva, V.A., Morphogenetic origin of natural variation, Biosystems, 2012, vol. 109, pp. 299–313.CrossRefGoogle Scholar
  24. 24.
    Cherdantseva, E.M. and Cherdantsev, V.G., Geometry and mechanics of teleost gastrulation and the formation of primary embryonic axes, Int. J. Dev. Biol., 2006, vol. 50, pp. 157–168.CrossRefGoogle Scholar
  25. 25.
    De Robertis, E.M., Spemann’s organizer and self-regulation in amphibian embryos, Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 296–302.CrossRefGoogle Scholar
  26. 26.
    Ereskovsky, A.V., The Comparative Embryology of Sponges, Dordrecht–Heidelberg–London–New York: Springer, 2010.CrossRefGoogle Scholar
  27. 27.
    Evren, S., Wen, J.W.H., Luu, O., Damm, E.W., Nagel, M., and Winklbauer, R., EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula, Development, 2014, vol. 141, no. 19, pp. 1–13.CrossRefGoogle Scholar
  28. 28.
    Fritzenwanker, J.H., Saina, M., and Technau, U., Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis, Dev. Biol., vol. 275, pp. 389–402.Google Scholar
  29. 29.
    Goodwin, B., How the Leopard changed its Spots: The Evolution of Complexity, London: Weidenfeld and Nicolson, 1994.Google Scholar
  30. 30.
    Gross, J.M. and Mcclay, D.R., The role of Brachyury (T) during gastrulation movements in the sea Urchin Lytechinus variegatus, Dev. Biol., 2001, vol. 239, no. 1, pp. 132–147.CrossRefGoogle Scholar
  31. 31.
    He, B., Doubrovinski, K., Polyakov, O., and Wieschaus, E., Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation, Nature, 2014, vol. 508, pp. 392–396.CrossRefGoogle Scholar
  32. 32.
    Hemmati-Brivanlou, A. and Melton, D., Vertebrate neural induction, Annu. Rev. Neurosci., 1997, vol. 20, pp. 43–60.CrossRefGoogle Scholar
  33. 33.
    Henry, J.J., Conserved mechanism of dorsoventral axis determination in equal-cleaving spiralians, Dev. Biol., 2002, vol. 248, no. 2, pp. 343–355.CrossRefGoogle Scholar
  34. 34.
    Hernández-Vega, A., Marsal, M., Pouille, P.A., Tosi, S., Calomel, J., Luque, T., Navajas, D., Pagonabarraga, I., and Martín-Blanco, E., Polarized cortical tension drives Zebrafish epiboly movements, EMBO J., 2017, vol. 36, no. 1, pp. 25–41.CrossRefGoogle Scholar
  35. 35.
    Haldane, J.B.S., The Causes of Evolution, New York: Harper and Brothers, 1932.Google Scholar
  36. 36.
    Haldane, J.B.S., Faktory evolyutsii (The Causes of Evolution), Moscow–Leningrad: Biomedgiz, 1935.Google Scholar
  37. 37.
    Holland, L.Z. and Holland, N.D., The revised fate map for amphioxus and evolution of axial patterning in chordates, Integr. Comp. Biol., 2013, vol. 3, pp. 360–372.Google Scholar
  38. 38.
    Ignatieva, G.M., Rannii Embriogenez Kostistykh Ryb i Amfibii (Early Embryogenesis of Teleosts and Amphibians), Moscow: Nauka, 1979.Google Scholar
  39. 39.
    Isaeva, V.V., Kasyanov, N.V., and Presnov, E.V., Topological singularities and symmetry breaking in development, Biosystems, 2012. vol. 109, pp. 280–298.CrossRefGoogle Scholar
  40. 40.
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F., Stages of embryonic development of the zebrafish, Dev. Dyn., 1995, vol. 203, pp. 253–310.CrossRefGoogle Scholar
  41. 41.
    Korvin-Pavlovskaya, E.G. and Cherdantsev, V.G., Geometry of movement of the outer surface of the embryo during Xenopus gastrulation, Russ. J. Dev. Biol., 2016, pp. 47, 223–237.Google Scholar
  42. 42.
    Kraus, Y.A., Morphomechanical programming of morphogenesis in cnidarian embryos <https: // istina.msu.ru/publications/article/2211274/>, Int. J. Dev. Biol., 2006, vol. 50, pp. 267–275.CrossRefGoogle Scholar
  43. 43.
    Kraus, Yu.A. and Cherdantsev, V.G., Variability and equifinality of early morphogenesis in the sea hydroid Dynamena pumila L., Ontogenez, 1999, vol. 6, pp. 119–129.Google Scholar
  44. 44.
    Kraus Yu. A., Markov A.V. Gastrulation in cnidarians: Key to the understanding of phylogeny or chaos of secondary modifications, Zh. Obshch. Biol., 2016, vol. 77, pp. 83–105.Google Scholar
  45. 45.
    Kremnyov, S.V., Troshina, N.G., and Beloussov, L.V., Active reinforcement of externally imposed folding in amphibian embryonic tissues, Mechanisms of development, 2012, vol. 129, pp. 51–60.CrossRefGoogle Scholar
  46. 46.
    Lvov, V., Obrazovanie Zarodyshevykh Listkov i Proiskhozhdenie Khordy i Mezodermy u Pozvonochnykh (Formation of the Germ Sheets and the Origin of Notochord and Mesoderm in Vertebrates), Moscow, 1893.Google Scholar
  47. 47.
    Lambert, J.D., Developmental patterns in spiralian embryos, Curr. Biol., 2010, vol. 20, pp. 72–77.CrossRefGoogle Scholar
  48. 48.
    Odell, G.M., Oster, G., Alberch, P., and Burnside, B., The mechanical basis of morphogenesis, I, Epithelial folding and invagination, Dev. Biol., 1981, vol. 85, pp. 446–462.CrossRefGoogle Scholar
  49. 49.
    Pouille, P.A. and Farge, E., Hydrodynamic simulation of multicellular embryo invagination, Phys Biol., 2008, vol. 5, pp. 015005.CrossRefGoogle Scholar
  50. 50.
    Presnov, E., Isaeva, V., and Kasyanov, N., Topological determination of early morphogenesis in Metazoa, Theor. Biosci., 2010, vol. 129, pp. 259–270.CrossRefGoogle Scholar
  51. 51.
    Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Springfield, IL: Charles C. Thomas, 1955.Google Scholar
  52. 52.
    Prigogine, I., Vvedenie v termodinamiku neobratimykh protsessov (Introduction to Thermodynamics of Irreversible Processes), Moscow: Inostr. Lit., 1960.Google Scholar
  53. 53.
    Röttinger, E. and Lowe, C.E., Evolutionary crossroads in developmental biology: Hemichordates, Development, 2012, vol. 139, pp. 2463–2475.CrossRefGoogle Scholar
  54. 54.
    Scobeyeva, V.A., The natural variability of morphogenesis: A tool for exploring the mechanics of gastrulation movements in amphibian embryos, Int. J. Dev. Biol., 2006, vol. 50, pp. 315–322.CrossRefGoogle Scholar
  55. 55.
    Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), Moscow–Leningrad: Akad. Nauk SSSR, 1939.Google Scholar
  56. 56.
    Shishkin, M.A., Individual development and natural selection, Ontogenez, 1984, vol. 15, pp. 115–136.Google Scholar
  57. 57.
    Schmalhausen, I.I., Problemy darvinizma (Problems of Darwinism), Leningrad: Nauka, 1969.Google Scholar
  58. 58.
    Takeuchi, M., Takahashi, M., Okabe, M., and Aizawa, S., Germ layer patterning in bichir and lamprey: An insight into its evolution in vertebrates, Dev. Biol., 2009. vol. 332, no. 1, pp. 90–102.CrossRefGoogle Scholar
  59. 59.
    Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., David, A., Weitz, D.A., Butler, J.P., and Fredberg, J.J., Physical forces during collective cell migration, Nature Phys., 2009, vol. 5, pp. 426–430.CrossRefGoogle Scholar
  60. 60.
    Trinkaus, J.P., Mechanism of Fundulus epiboly—a current view, Am. Zool., 1984, vol. 24, pp. 673–688.CrossRefGoogle Scholar
  61. 61.
    Yasui, K., Saiga, H., Wang, Y., Zhang, P.J., and Semba, I., Early expressed genes showing a dichotomous developing pattern in the lancelet embryo, Dev., Growth, Diff., 2001, vol. 43, pp. 185–194.CrossRefGoogle Scholar
  62. 62.
    Zakhvatkin, A.A., Sravnitel’naya embriologiya nizshikh bespozvonochnykh (Comparative Embryology of Lower Invertebrates), Moscow: Nauka, 1949.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Biological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations