Advertisement

Paleontological Journal

, Volume 52, Issue 10, pp 1179–1185 | Cite as

Laboratory Simulation of “Proteolytic Bacterium–Cyanobacterium” Interaction in Alkaliphilic Microbial Community

  • Yu. V. Boltyanskaya
  • V. V. Kevbrin
Article
  • 2 Downloads

Abstract

The work continues the series of long-term studies of the microbial diversity of soda lakes and concerns the problem of anaerobic decomposition of proteins. The physiology of new proteolytic bacteria has been investigated. The lytic effect of the alkaliphilic anaerobe Proteinivorax tanatarense on other members of community, primarily cyanobacteria, has been demonstrated. P. tanatarense proved to be a saprotrophic satellite regulating the number of cyanobacteria under night conditions. The directed effects of P. tanatarense on phototrophic and chemotrophic Gram-negative microorganisms were demonstrated as well as the absence of its effect on any Gram-positive microorganisms. Such specialization of proteolytic agent could be implemented in cyanobacterial communities of the past.

Keywords:

alkaliphilic microbial community cyanobacteria anaerobic proteolytic bacteria proteins soda lakes 

Notes

ACKNOWLEDGMENTS

The study was partially supported by Basic Research Program No 17, Subprogram 2 of the Russian Academy of Sciences “Evolution of the Organic World and Planetary Processes”, a grant from the Russian Foundation for Basic Research No. 18-04-00236 “Degradation of nitrogen-containing components of a bacterial cell by alkaliphilic microorganisms of soda lakes”, and by a state assignment No. 0104-2018-0030.

REFERENCES

  1. 1.
    Alazard, D., Badillo, C., Fardeau, M.L., Cayol, J.L., Thomas, P., Roldan, T., Tholozan, J.L., and Ollivier, B., Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from Lake Texcoco, Mexico, Extremophiles, 2007, vol. 11, pp. 33–39.Google Scholar
  2. 2.
    Boltyanskaya, Yu.V., Antipov, A.N., Kolganova, T.V., Lysenko, A.M., Kostrikina, N.A., and Zhilina, T.N., Halomonas campisalis, an obligatorily alkaliphilic, nitrous oxide-reducing denitrifier with a Mo-cofactor-lacking nitrate reductase, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 326–334.Google Scholar
  3. 3.
    Dubinin, A.V., Gerasimenko, L.M., and Zavarzin, G.A., Ecophysiology and species diversity of cyanobacteria in Lake Magadi, Mikrobiologiya, 1995, vol. 64, no. 6, pp. 845–849.Google Scholar
  4. 4.
    Duckworth, A.W., Grant, W.D., Jones, B.E., and van Steenbergen, R., Phylogenetic diversity of soda lake alkaliphiles, FEMS Microbiol. Ecol., 1996, vol. 19, pp. 181–191.CrossRefGoogle Scholar
  5. 5.
    Gerasimenko, L.M., Dubinin, A.V., and Zavarzin, G.A., Alkaliphilic cyanobacteria from soda lakes of Tuva and their ecophysiology, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 736–740.Google Scholar
  6. 6.
    Grant, W.D. and Jones, B.E., Bacteria archaea and viruses of soda lakes, in Soda lakes of East Africa, Schagerl, M., Ed., Springer, 2016.Google Scholar
  7. 7.
    Grant, W.D., Mwatha, W.E., and Jones, B.E., Alkaliphiles: Ecology, diversity and applications, FEMS Microbiol. Rev., 1990, vol. 75, pp. 255–270.CrossRefGoogle Scholar
  8. 8.
    Isachenko, B.L., Chloride, sulphatic, and soda lakes of the Kulunda Steppe and biogenic processes in them, in B.L. Isachenko. Izbrannye trudy (B.L. Isachenko: Selected Works), Moscow–Leningrad: Akad. Nauk SSSR, 1951, pp. 143–162.Google Scholar
  9. 9.
    Kevbrin, V., Boltynskaya, Y., Zhilina, T., Kolganova, T., Lavrentjeva, E., and Kuznetsov, B., Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov, Extremophiles, 2013, vol. 17, pp. 747–756.CrossRefGoogle Scholar
  10. 10.
    Kevbrin, V.V., Zhilina, T.N., Rainey, F.A., and Zavarzin, G.A., Tindallia magadii gen. nov., sp. nov.: An alkaliphilic anaerobic ammonifier from soda lake deposits, Curr. Microbiol., 1998, vol. 37, pp. 94–100.CrossRefGoogle Scholar
  11. 11.
    Makarov, S.Z., Materialy k fiziko-khimicheskomu izucheniyu solyanykh ozer Kulundinskoi stepi. Kulundinskaya ekspeditsiya Akademii nauk SSSR 1931–1932 gg. (Material of Physical and Chemical Analysis of Hydrochloric Lakes of the Kulunda Steppe: Kulunda Expedition of the Academy of Sciences of the USSR in 1931–1932), Moscow–Leningrad: Akad. Nauk SSSR, 1935.Google Scholar
  12. 12.
    Melack, J.M. and Kilham, P., Photosynthetic rates of phytoplankton in East African alkaline, saline lakes, Limnol. Oceanogr., 1974, vol. 19, pp. 743–755.CrossRefGoogle Scholar
  13. 13.
    Pikuta, E.V., Hoover, R.B., Bey, A.K., Marsic, D., Detkova, E.N., Whitman, W.B., and Krader, P., Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California, Extremophiles, 2003, vol. 7, pp. 327–334.CrossRefGoogle Scholar
  14. 14.
    Samylina, O.S., Gerasimenko, L.M., and Shadrin, N.V., Comparative characteristics of phototrophic communities in mineral lakes of Crimea (Ukraine) and the Altai Region (Russia), Al’gologiya, 2010, vol. 20, no. 2, pp. 192–209.Google Scholar
  15. 15.
    Samylina, O.S., Sapozhnikov, F.V., Gainanova, O.Yu., Ryabova, A.V., Nikitin, M.A., and Sorokin, D.Yu., Algobacterial communities of the Kulunda steppe (Altai Region, Russia) soda lakes, Mikrobiologiya, 2014, vol. 83, no. 6, pp. 849–860.Google Scholar
  16. 16.
    Shapovalova, A.A., Khijniak, T.V., Tourova, T.P., Muyzer, G., and Sorokin, D.Y., Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes, Extremophiles, 2008, vol. 12, pp. 619–625.CrossRefGoogle Scholar
  17. 17.
    Sorokin, D.Y., Banciu, H.L., and Muyzer, G., Functional microbiology of soda lakes, Curr. Opin. in Microbiol., 2015, vol. 25, pp. 88–96.CrossRefGoogle Scholar
  18. 18.
    Sorokin, D.Y., Tourova, T.P., Panteleeva, A.N., Kaparullina, E.N., and Muyzer, G., Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hypersaline soda lakes, Extremophiles, 2012, vol. 16, pp. 307–315.CrossRefGoogle Scholar
  19. 19.
    Takai, K., Moser, D.P., Onstott, T.C., Spoelstra, N., Pfiffner, S.M., Dohnalkova, A., and Fredrickson, J.K., Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine, Extremophiles, 2001, vol. 51, pp. 1245–1256.Google Scholar
  20. 20.
    Zavarzin, G.A., Epicontinental soda water bodies as presumable relict biotopes for the development of terrestrial biota, Mikrobiologiya, 1993, vol. 62, no. 5, pp. 789–800.Google Scholar
  21. 21.
    Zavarzin, G.A., Formation of soda conditions as a global process, Tr. Inst. Mikrobiol. Ross. Akad. Nauk, 2007, vol. 14 (Alkaliphilic Microbic Assemblages, Gal’chenko, V.F., Ed.), pp. 8–57.Google Scholar
  22. 22.
    Zavarzin, G.A., First ecosystems of the Earth, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Rozanov, A.Yu., Lopatin, A.V., and Snytnikov, S.N., Eds., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009, pp. 230–244.Google Scholar
  23. 23.
    Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., Alkaliphilic microbial community and its functional diversity, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 503–521.Google Scholar
  24. 24.
    Zavarzin, G.A., Zhilina, T.N., and Pikuta, E.V., Secondary anaerobes in haloalkaliphilic lake communities of Tuva, Mikrobiologiya, 1996, vol. 65, no. 4, pp. 480–486.Google Scholar
  25. 25.
    Zhilina, T.N., Chemotrophic anaerobes of microbial communities of soda lakes, Tr. Inst. Mikrobiol. Ross. Akad. Nauk, 2007, vol. 14 (Alkaliphilic Microbic Assemblages, Gal’chenko, V.F., Ed.), pp. 158–224.Google Scholar
  26. 26.
    Zhilina, T.N., Detkova, E.N., Rainey, F.A., Osipov, G.A., Lysenko, A.M., Kostrikina, N.A., and Zavarzin, G.A., Natronoincola histidinovorans gen. nov., sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: A new member of Haloanaerobiales, Curr. Microbiol., 1998. vol. 32, pp. 320–326.CrossRefGoogle Scholar
  27. 27.
    Zhilina, T.N., Kevbrin, V.V., Turova, T.P., Lysenko, A.M., Kostrikina, N.A., and Zavarzin, G.A., Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic from a soda lake in the Baikal Region, Mikrobiologiya, 2005, vol. 74, no. 5, pp. 642–653.Google Scholar
  28. 28.
    Zhilina, T.N. and Zavarzin, G.A., Alkaliphilic anaerobic community at pH 10, Curr. Microbiol., 1994, vol. 29, pp. 109–112.CrossRefGoogle Scholar
  29. 29.
    Zhilina, T.N., Zavarzina, D.G., Kolganova, T.V., Lysenko, A.M., and Turova, T.P., New alkaliphilic peptide fermenting and Fe(III) regenerating bacteria Alkaliphilus peptidofermentans sp. nov. from soda lake, Mikrobiologiya, 2009a, vol. 78, no. 4, pp. 496–505.Google Scholar
  30. 30.
    Zhilina, T.N., Zavarzina, D.G., Osipov, G.A., Kostrikina, N.A., and Turova, T.P., Natronincola ferrireducens sp. nov. and Natronincola peptidovorans sp. nov., new anaerobic alkaliphilic peptide lysing and iron-reducing bacteria from soda lake, Mikrobiologiya, 2009b, vol. 78, no. 4, pp. 506–518.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of SciencesMoscowRussia

Personalised recommendations