Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 750–755 | Cite as

Effect of Near Ultraviolet Irradiation on Changes in Island Metallic Films during Thermal Annealing

  • N. B. LeonovEmail author
OPTICS OF SURFACES AND INTERFACES
  • 11 Downloads

Abstract

The effect of low-intensity near ultraviolet irradiation and subsequent thermal annealing on the surface morphology of gold and silver granular films was investigated. It was found that exposure to light does not lead to immediate changes in the extinction spectra and the microstructure of the films. However, after annealing at a temperature of about 200°C, the difference between irradiated and non-irradiated areas becomes clearly visible both visually and in the extinction spectra of the island films. For the irradiated gold film, changes in the annealing process occur much more slowly than for the non-irradiated one. For silver films, the changes after annealing vary significantly depending on whether the film is irradiated in a vacuum or in air. From the optical extinction spectra and SEM images, it can be concluded that the conditions for the annealing-induced surface diffusion of metal atoms in the irradiated area change significantly, and these changes depend on the irradiation conditions.

Keywords:

ultraviolet irradiation metal film annealing diffusion 

Notes

ACKNOWLEDGMENTS

The author thanks V.A. Polischuk for the micrographs provided as well as V.P. Krutyakova, T.A. Vartanyan, and V.L. Komolov for a careful reading of the article and fruitful discussions.

REFERENCES

  1. 1.
    F. I. Ruffino, E. Crupi, S. Carria, F. Kimiagar, M. Simone, and M. G. Grimaldi, Mater. Sci. Eng. B 178, 533 (2013).CrossRefGoogle Scholar
  2. 2.
    F. I. Ruffino, A. Pugliara, E. Carria, L. Romano, and M. G. Grimaldi, Appl. Surf. Sci. 258, 9128 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Trager, Appl. Phys. B 69, 513 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    Harim Oh and Jeeyoung Lee, Appl. Surf. Sci. 427, 65 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    T. A. Vartanyan and N. B. Leonov, Opt. Spectrosc. 120, 628 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. M. Bonch-Bruevich, T. A. Vartanyan, Yu. N. Maksimov, S. G. Przhibelskii, and V. V. Khromov, Sov. Phys. JETP 70, 993 (1990).Google Scholar
  7. 7.
    W. Hoheisel, M. Vollmer, and F. Trager, Phys. Rev. B 48, 17463 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    F. Stietz, T. A. Vartanyan, J. Viereck, T. Wenzel, and F. Trager, Appl. Phys. A 66, 367 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    I. Lee, J. E. Parks, T. A. Callcott, and E. T. Arakawa, Phys. Rev. B 39, 8012 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    N. B. Leonov, I. A. Gladskikh, V. A. Polishchuk, and T. A. Vartanyan, Opt. Spectrosc. 119, 450 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    N. B. Leonov, Opt. Spectrosc. 125, 544 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    K. L Kelly, E. Coronado, Lin Lin Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
  13. 13.
    N. A. Toropov, N. B. Leonov, and T. A. Vartanyan, Phys. Status Solidi B, 1700174 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    N. Combe, P. Jensen, and A. Pimpinelli, Phys. Rev. Lett. 85, 110 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    Ya. E. Geguzin, Essays on Diffusion in Crystals (Nauka, Moscow, 1974) [in Russian].Google Scholar
  16. 16.
    F. Stietz, T. A. Vartanyan, J. Viereck, T. Wenzel, and F. Treger, Appl. Phys. A 66, 367 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    N. B. Leonov, V. A. Polishchuk, and T. A. Vartanayn, in Metal Nanoparticles: Properties, Synthesis and Applications, Ed. by Y. Sailor and V. Irby (Nova Science, New York, 2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations