Optics and Spectroscopy

, Volume 127, Issue 4, pp 756–762 | Cite as

Femtosecond Absorption Spectroscopy of Reduced and Oxidized Forms of Cytochrome c Oxidase: Excited States and Relaxation Processes in Heme a and a3 Centers

  • I. V. Shelaev
  • F. E. Gostev
  • T. V. Vygodina
  • S. V. Lepeshkevich
  • B. M. DzhagarovEmail author


Excited electronic states and intraheme relaxation processes in the oxidized and reduced forms of mitochondrial cytochrome c oxidase extracted from a beef heart have been investigated by femtosecond absorption spectroscopy. The spectral and kinetic characteristics of short-lived intermediates have been measured from 80 fs to 20 ps after the photoexcitation. It is found that nonradiative electronic relaxation of the excitation energy in heme a, both in the oxidized (Fe(III)a) and reduced (Fe(II)a) forms, occurs successively as three processes, after the end of which heme a is in the ground state with a large store of vibrational energy. The subsequent vibrational relaxation (heme cooling) lasts for several picoseconds. It is found for reduced heme a3 (Fe(II)a3) that the electronic relaxation occurs as a result of two successive stages, which changes to vibrational relaxation in the ground state. The mechanism and dynamics of electronic excitation energy conversion in cytochrome c oxidase are analyzed.


cytochrome c oxidase femtosecond absorption spectroscopy excited electronic states relaxation processes spectral intermediates 



We are grateful to A.A. Konstantinov and A.F. Chaikovskii for their interest in this study and valuable remarks.


This study was supported by the State Research Program “Photonics and Opto- and Microelectronics 1.4.01” (2016–2020) of the Republic of Belarus, Russian Foundation for Basic Research (project no. 17-04-00160a), and a grant for the Semenov Institute of Chemical Physics, Russian Academy of Sciences, within state contract 0082-2019-0001 (registration no. AAAA-A19-119012890064-7).


The authors declare that they have no conflict of interest.


  1. 1.
    V. R. I. Kaila, M. I. Verkhovsky, and M. Wikström, Chem. Rev. 110, 7062 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Yoshikawa and A. Shimada, Chem. Rev. 115, 1936 (2015).CrossRefGoogle Scholar
  3. 3.
    S. A. Siletsky and A. A. Konstantinov, Biochim. Biophys. Acta 1817, 476 (2012).CrossRefGoogle Scholar
  4. 4.
    W. H. Vanneste, Biochemistry 65, 838 (1966).CrossRefGoogle Scholar
  5. 5.
    A. V. Dyuba, T. V. Vygodina, and A. A. Konstantinov, Biochemistry (Moscow) 78, 1358 (2013).CrossRefGoogle Scholar
  6. 6.
    D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, Biochem. J. 191, 319 (1980).CrossRefGoogle Scholar
  7. 7.
    I. V. Shelaev, F. E. Gostev, T. V. Vygodina, S. V. Lepeshkevich, and B. M. Dzhagarov, High Energy Chem. 52, 45 (2018).CrossRefGoogle Scholar
  8. 8.
    T. V. Vygodina, A. Kirichenko, and A. A. Konstantinov, Biochim. Biophys. Acta 1837, 1188 (2014).CrossRefGoogle Scholar
  9. 9.
    L. R. Fowler, S. H. Richardson, and Y. Hatefi, Biochim. Biophys. Acta 64, 170 (1962).CrossRefGoogle Scholar
  10. 10.
    A. Bukreev, K. Mikhailov, I. Shelaev, F. Gostev, Yu. Polevaya, V. Tyurin, I. Beletskaya, S. Umansky, and V. Nadtochenko, J. Phys. Chem. A 120, 1961 (2016).CrossRefGoogle Scholar
  11. 11.
    E. N. Ushakov, V. A. Nadtochenko, S. P. Gromov, A. I. Vedernikov, N. A. Lobova, M. V. Alfimov, F. E. Gostev, A. N. Petrukhin, and O. M. Sarkisov, Chem. Phys. 298, 251 (2004).CrossRefGoogle Scholar
  12. 12.
    I. V. Shelaev, F. E. Gostev, M. D. Mamedov, O. M. Sar-kisov, V. N. Nadtochenko, V. A. Shuvalov, and A. Yu. Semenov, Biochim. Biophys. Acta 1797, 1410 (2010).CrossRefGoogle Scholar
  13. 13.
    M. W. Makinen and A. K. Churg, in Iron Porphyrins, Ed. by A. B. P. Lever and H. B. Gray (Addison-Wesley, Reading, MA, 1983), Part 1, p. 141.Google Scholar
  14. 14.
    J.-H. Fuhrhop, in Porphyrins and Metalloporphyrins, Ed. by K. M. Smith (Elsevier, North-Holland Biomedical, Amsterdam, 1976), Chap. 14, p. 593.Google Scholar
  15. 15.
    D. Dolphin, A. W. Addison, M. Cairns, R. K. Dinello, N. P. Farrell, B. R. James, D. R. Paulson, and C. Welborn, Int. J. Quantum Chem. 16, 311 (1979).CrossRefGoogle Scholar
  16. 16.
    Y. Kholodenko, M. Volk, E. Gooding, and R. M. Ho-chstrasser, Chem. Phys. 259, 71 (2000).CrossRefGoogle Scholar
  17. 17.
    M. Lim, T. A. Jackson, and P. A. Anfinrud, J. Phys. Chem. 100, 12043 (1996).CrossRefGoogle Scholar
  18. 18.
    P. O. Stoutland, J.-C. Lambry, J.-L. Martin, and W. H. Woodruff, J. Phys. Chem. 95, 6406 (1991).CrossRefGoogle Scholar
  19. 19.
    B. M. Dzhagarov, L. M. Belyanovich, A. A. Konstantinov, A. N. Rudenok, and S. A. Tikhomirov, Dokl. Biophys. 373, 53 (2000).CrossRefGoogle Scholar
  20. 20.
    B. M. Dzhagarov, V. S. Chirvonyi, and G. P. Gurinovich, in Laser Picosecond Spectroscopy and Photochemistry of Biomolecules, Ed. by V. S. Letokhov (Adam Hilger, Bristol, Philadelphia, 1987; Nauka, Moscow, 1987), Chap. 3, p. 137.Google Scholar
  21. 21.
    B. M. Dzhagarov, G. P. Gurinovich, V. E. Novichenkov, K. I. Salokhiddinov, A. M. Shulga, and V. A. Ganzha, Khim. Fiz. 6, 1069 (1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Shelaev
    • 1
  • F. E. Gostev
    • 1
  • T. V. Vygodina
    • 2
  • S. V. Lepeshkevich
    • 3
  • B. M. Dzhagarov
    • 3
    Email author
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Belozerski Institute of Physicochemical Biology, Moscow State UniversityMoscowRussia
  3. 3.Stepanov Institute of Physics, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations