Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 618–624 | Cite as

Hardware/Software Support for Correlation Detection in Holographic Wavefront Sensors

  • P. A. Ruchka
  • N. M. Verenikina
  • I. V. Gritsenko
  • E. Yu. Zlokazov
  • M. S. Kovalev
  • G. K. Krasin
  • S. B. OdinokovEmail author
  • N. G. Stsepuro
HOLOGRAPHY
  • 23 Downloads

Abstract

An algorithm that automatically calculates aberrations in the holographic wavefront sensor scheme previously proposed by the authors is described, which enables measuring aberrations by means of iterative generation of holograms on a phase spatial light modulator (SLM). The practical implementation of this algorithm on the basis of the feedback of the camera and SLM is given. Using the proposed algorithm, defocusing was measured with an accuracy of λ/160.

Keywords:

computer holography Fourier hologram wavefront measurement wavefront sensor correlation detection 

Notes

ACKNOWLEDGMENTS

We are grateful to V.Yu. Venediktov and G.N. Vishnyakov for a fruitful discussion of the problem.

FUNDING

This work was performed in the Bauman Moscow State Technical University with a financial support from the Ministry of Education and Science of the Russian Federation as a main part of the state order project no. 3.2236.2017/4.6.

CONFLICT OF INETERST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    L. Freisem, G. S. M. Jansen, D. Rudolf, K. S. E. Eikema, and S. Witte, Opt. Express 26, 6860 (2018).  https://doi.org/10.1364/OE.26.006860 ADSCrossRefGoogle Scholar
  2. 2.
    Zhigang Jia, Kai Xu, and Fengzhou Fang, Opt. Express 25, 22125 (2017).  https://doi.org/10.1364/OE.25.022125 ADSCrossRefGoogle Scholar
  3. 3.
    Boer Zhu, Xiangzhao Wang, Sikun Li, Guanyong Yan, Lina Shen, and Lifeng Duan, Appl. Opt. 55, 3192 (2016).  https://doi.org/10.1364/AO.55.003192 ADSCrossRefGoogle Scholar
  4. 4.
    O. Azucena, J. Crest, Jian Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, Opt. Express 18, 17521 (2010).  https://doi.org/10.1364/OE.18.017521 ADSCrossRefGoogle Scholar
  5. 5.
    C. C. de Visser and M. Verhaegen, J. Opt. Soc. Am. A 30, 82 (2013).  https://doi.org/10.1364/JOSAA.30.000082 ADSCrossRefGoogle Scholar
  6. 6.
    M. A. A. Neil, M. J. Booth, and T. Wilson, J. Opt. Soc. Am. A 17, 1098 (2000).  https://doi.org/10.1364/JOSAA.17.001098 ADSCrossRefGoogle Scholar
  7. 7.
    F. Ghebremichael, G. Andersen, and K. Gurley, Appl. Opt. 47, A62 (2008). https://doi.org/10.1364/AO.47.000A62 CrossRefGoogle Scholar
  8. 8.
    G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, Opt. Eng. 48, 085801 (2009).  https://doi.org/10.1364/AO.49.005117 ADSCrossRefGoogle Scholar
  9. 9.
    Liu Changhai, Xi Fengjie, Ma Haotong, Huang Shengyang, and Jiang Zongfu, Appl. Opt. 49, 5117 (2010).  https://doi.org/10.1364/AO.49.005117 CrossRefGoogle Scholar
  10. 10.
    Sh. Dong, T. Haist, and W. Osten, Appl. Opt. 51, 6268 (2012).  https://doi.org/10.1364/AO.51.001318 ADSCrossRefGoogle Scholar
  11. 11.
    A. Zepp, S. Gładysz, and K. Stein, Adv. Opt. Technol. 2, 433 (2013).  https://doi.org/10.1515/aot-2013-0050 ADSCrossRefGoogle Scholar
  12. 12.
    E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, Proc. SPIE 9979, 99790X (2016).  https://doi.org/10.1117/12.2236341 ADSCrossRefGoogle Scholar
  13. 13.
    V. Yu. Venediktov, Photonics 55, 132 (2016).Google Scholar
  14. 14.
    G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlo-kazov, Proc. SPIE 10787, 107870D (2018). https://doi.org/10.1117/12.2325437 CrossRefGoogle Scholar
  15. 15.
    V. V. Orlov, V. Yu. Venediktov, A. V. Gorelaya, E. V. Shubenkova, and D. Z. Zhamalatdinov, Opt. Laser Technol. 116, 214 (2019).  https://doi.org/10.1016/j.optlastec.2019.03.028 ADSCrossRefGoogle Scholar
  16. 16.
    Shihao Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, Appl. Opt. 51, 1318 (2012).  https://doi.org/10.1364/AO.51.001318 ADSCrossRefGoogle Scholar
  17. 17.
    S. Konwar and B. R. Boruah, J. Opt. Soc. Am. A 36, 741 (2019).  https://doi.org/10.1364/JOSAA.36.000741 ADSCrossRefGoogle Scholar
  18. 18.
    V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, Optoelectron. Instrum. Data Process. 54, 26 (2018).  https://doi.org/10.3103/S8756699018010053 CrossRefGoogle Scholar
  19. 19.
    M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and E. Yu. Zlokazov, Opt. Express 27, 1563 (2019).  https://doi.org/10.1364/OE.27.001563 ADSCrossRefGoogle Scholar
  20. 20.
    M. S. Kovalev, G. K. Krasin, P. A. Nosov, S. B. Odinokov, and I. Yu. Filippov, Int. J. Appl. Eng. Res. 12, 13303 (2017).Google Scholar
  21. 21.
    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, New York, 2013).CrossRefGoogle Scholar
  22. 22.
    B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition (Cambridge Univ. Press, New York, 2015).zbMATHGoogle Scholar
  23. 23.
    R. Fletcher, Practical Methods of Optimization (Wiley-Interscience, New York, 2013).zbMATHGoogle Scholar
  24. 24.
    J. Barzilai and J. M. Borwein, IMA J. Numer. Anal. 8, 141 (1988). https://doi.org/10.1093/imanum/8.1.141 MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. A. Nelder and R. A. Mead, Comput. J. 7, 308 (1965).  https://doi.org/10.1093/comjnl/7.4.308 MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Kennedy and R. Eberhart, in Proceedings of IEEE International Conference on Neural Networks IV, Perth,1995, p. 1942.  https://doi.org/10.1109/ICNN.1995.488968

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. A. Ruchka
    • 1
  • N. M. Verenikina
    • 1
  • I. V. Gritsenko
    • 1
  • E. Yu. Zlokazov
    • 1
    • 2
  • M. S. Kovalev
    • 1
  • G. K. Krasin
    • 1
  • S. B. Odinokov
    • 1
    Email author
  • N. G. Stsepuro
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations