Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 664–668 | Cite as

Fiber Optic Raman Distributed Temperature Sensor Based on an Ultrashort Pulse Mode-Locked Fiber Laser

  • Ya. Zh. Ososkov
  • A. O. Chernutsky
  • D. A. DvoretskiyEmail author
  • S. G. Sazonkin
  • I. S. Kudelin
  • I. O. Orekhov
  • A. B. Pnev
  • V. E. Karasik
OPTICAL SENSORS AND TRANSDUCERS
  • 10 Downloads

Abstract

The testing of an all-fiber erbium ultrashort pulsed laser in a distributed fiber temperature sensor as a source of probing pulses has been performed. Among the prospects of such an approach are an improved signal–noise ratio in the receiving system and a better spatial resolution of the temperature sensor. The experiments have revealed the factors that limit the effective length of the fiber temperature sensor, such as a high pulse repetition frequency and intrinsic laser noises. As a result of the performed work, the distributed fiber optical temperature sensor with a near-room-temperature resolution of ~1.5 K, an effective length of ~3 m, and a spatial resolution of ~10 cm has been developed.

Keywords:

Raman scattering scattering pattern Stokes and anti-Stokes components 

Notes

FUNDING

This work was financially supported by the Russian Science Foundation within the scientific project no. 19-72-00090.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    J. P. Dakin et al., Electron. Lett. 21, 569 (1985).CrossRefGoogle Scholar
  2. 2.
    U. Glombitza and H. Hoff, in Proceedings of the 13th International Conference on Automatic Fire Detection,2004, p. 1.Google Scholar
  3. 3.
    G. Yilmaz and S. E. Karlik, Sens. Actuators, A 125, 148 (2006).CrossRefGoogle Scholar
  4. 4.
    H. Ishii, K. Kawamura, T. Ono, H. Megumi, and A. Kikkawa, Fire Safety J. 29, 87 (1997).CrossRefGoogle Scholar
  5. 5.
    M. Giuseffi, P. Ferdinand, A. Vrain, M. Philippe, and H. Lesueur, Proc. SPIE 7653, 76533P (2010).ADSCrossRefGoogle Scholar
  6. 6.
    F. Xiao, J. L. Hulsey, and R. Balasubramanian, Struct. Control Health Monit. 24 (11) (2017).Google Scholar
  7. 7.
    A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, IEEE Sensors J. 8, 1375 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C. Moran, W. Johnstone, B. Culshaw, D. Marsh, and P. Parker, Sens. Actuators, A 109, 60 (2003).CrossRefGoogle Scholar
  9. 9.
    M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, Appl. Phys. Lett. 99, 20111 (2011).CrossRefGoogle Scholar
  10. 10.
    D. A. Dvoretskiy, V. A. Lazarev, V. S. Voropaev, Z. N. Rodnova, S. G. Sazonkin, S. O. Leonov, and A. A. Krylov, Opt. Express 23, 33295 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. J. Smolen and A. van der Spek, Tech. Report (Shell, 2003).Google Scholar
  12. 12.
    L. V. Kotov et al., Quantum Electron. 44, 458 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Ya. Zh. Ososkov
    • 1
  • A. O. Chernutsky
    • 1
  • D. A. Dvoretskiy
    • 1
    Email author
  • S. G. Sazonkin
    • 1
  • I. S. Kudelin
    • 1
  • I. O. Orekhov
    • 1
  • A. B. Pnev
    • 1
  • V. E. Karasik
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations