Optics and Spectroscopy

, Volume 127, Issue 4, pp 746–749 | Cite as

Study of Fiber Optic Elements Based on a Photoactive Polymer Composition for Sensor Applications

  • A. S. Matrosova
  • S. K. Evstropiev
  • L. Yu. Mironov
  • N. V. Nikonorov
  • A. V. Komarov
  • V. V. DemidovEmail author


The model of a fiber optic sensor device which operational principle is based on the thermal quenching of luminescence for ambient temperature measurements was experimentally studied. The construction of a multimode optical fiber with a transmission of more than 90%/m in the spectral region from 350 to 650 nm and a quartz capillary filled with a photoactive polymer composition based on epoxyacrylate and the europium complex with 2-naphthoyltrifluoroacetone and trioctylphosphinoxide was used as a sensitive sensor element. An exponentially decreasing character of the temperature dependence of the luminescence intensity was discovered for the photoactive composition incorporated into the sensor (excitation wavelength, 355 nm; luminescence wavelength, 615 nm) within a range from 20 to 100°C. A quasi-linear change in the luminescence intensity depending on the power of the launched UV radiation was determined.


sensor fiber optic element europium luminescence photoactivity 



The study of the spectral luminescent properties of the photoactive polymer composition was financially supported by the Russian Scientific Foundation, grant no. 19-19-00596. The study of the sensitivity of the fiber optic element based on the photoactive polymer composition to the temperature change was supported by the Russian Scientific Foundation, grant no. 18-12-00075.


The authors declare that they have no conflict of interest.


  1. 1.
    K. T. V. Grattan and T. Sun, Sens. Actuators, A 82, 40 (2000).CrossRefGoogle Scholar
  2. 2.
    R. G. Jackson, Novel Sensors and Sensing (CRC, London, 2004).Google Scholar
  3. 3.
    K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Springer, Dordrecht, Netherlands, 1999), Vol. 4.CrossRefGoogle Scholar
  4. 4.
    M. McSherry, C. Fitzpatrick, and E. Lewis, Sensor Rev. 25, 56 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Fitzpatrick, C. O’Donoghue, and E. Lewis, Meas. Sci. Technol. 14, 1477 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    J. Zmojda, M. Kochanowicz, P. Miluski, and D. Dorosz, Fibers 2, 150 (2014).CrossRefGoogle Scholar
  7. 7.
    D. S. Agafonova, E. V. Kolobkova, A. I. Ignatiev, N. V. Nikonorov, T. A. Shakhverdov, P. S. Shirshnev, A. I. Sidorov, and V. N. Vasiliev, Opt. Eng. 54, 117107 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yan, X. Zhang, H. Li, Y. Ma, X. Tianci, Z. Qin, S. Liu, W. Sun, and E. Lewis, Sensors 18, 3754 (2018).CrossRefGoogle Scholar
  9. 9.
    L. Yu. Mironov and S. K. Evstropiev, Opt. Eng. 58, 027113 (2019).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Matrosova
    • 1
    • 2
  • S. K. Evstropiev
    • 2
  • L. Yu. Mironov
    • 2
  • N. V. Nikonorov
    • 2
  • A. V. Komarov
    • 1
  • V. V. Demidov
    • 1
    Email author
  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations