Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 629–633 | Cite as

Localized Second Optical Harmonic in Nonlinear Optical Ceramics Excited by a Femtosecond Laser

  • S. O. Leonov
  • M. A. Bastamova
  • N. V. Sidorov
  • M. N. Palatnikov
  • V. S. GorelikEmail author
NONLINEAR OPTICS
  • 16 Downloads

Abstract

Second harmonic generation is studied in samples of LiTaO3 powder ceramics with different lithium concentrations (48.8 and 49.3%) under excitation by a femtosecond laser at a wavelength of 1.026 nm. The dependence of the second harmonic integral power on the incident radiation power is measured, and a method for estimating the nonlinearity coefficient and its homogeneity in green-body ceramics is proposed.

Keywords:

second harmonic generation nonlinear optical materials ceramics femtosecond radiation 

Notes

FUNDING

This work was supported by the Russian Science Foundation, project no. 19-12-00242.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    P. Franken, A. Hill, C. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).  https://doi.org/10.1103/PhysRevLett.7.118 ADSCrossRefGoogle Scholar
  2. 2.
    F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).Google Scholar
  3. 3.
    R. L. Byer, Ann. Rev. Mater. Sci. 4, 147 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    V. S. Gorelik, E. V. Zhabotinskii, and G. G. Mitin, Quantum Electron. 24, 338 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    E. Kim, A. Steinbruck, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, ACS Nano 7, 5343 (2013).CrossRefGoogle Scholar
  6. 6.
    V. S. Gorelik, K. I. Zaitsev, L. I. Zlobina, P. P. Sverbil, and S. Yurchenko, Phys. Solid State 57, 453 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Gorelik et al., J. Russ. Laser Res. 37, 254 (2016).CrossRefGoogle Scholar
  8. 8.
    O. Sánchez-Dena et al., Mater. Res. Express 4, 035022 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    I. Aramburu et al., Appl. Phys. Lett. 104, 071107 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    K. F. Carr, Labsphere Technical Guide (Labsphere Inc., 1997).Google Scholar
  11. 11.
    M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, Ferroelectric Solid Solutions Based on Oxide Compounds of Niobium and Tantalum. Synthesis, Study of Structural Ordering and Physical Characteristics (Nauka, St. Petersburg, 2001) [in Russian].Google Scholar
  12. 12.
    S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Nonlinear Optical Crystals: Properties and Applications in Quantum Electronics, The Reference Book (Radio Svyaz’, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. O. Leonov
    • 1
  • M. A. Bastamova
    • 1
  • N. V. Sidorov
    • 3
  • M. N. Palatnikov
    • 3
  • V. S. Gorelik
    • 1
    • 2
    Email author
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Scientific Center, Russian Academy of SciencesApatityRussia

Personalised recommendations