Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 596–601 | Cite as

Raman Scattering in Chiral-Pure and Racemic Phases of Tryptophan and Tyrosine Polycrystals

  • V. S. GorelikEmail author
  • M. F. Umarov
  • Yu. P. Voinov
SPECTROSCOPY OF CONDENSED STATES
  • 9 Downloads

Abstract

Raman spectra of tryptophan and tyrosine polycrystals have been analyzed in a wide spectral range by fiber-optic spectroscopy. The Raman spectra have been recorded with a BWS465-785H spectrometer in the spectral range of 0–2700 cm–1 using a 785-nm cw laser as an excitation source. Parameters of the Raman spectra are compared for three crystalline phase modifications of aromatic amino acids: left-handed, right-handed, and racemic phase. The presence of strong Raman satellites, the characteristics of which change depending on the type of the chiral phase state of amino acid, is found in the low-frequency Raman spectra of tryptophan and tyrosine amino acid lattices. The results obtained can be used for monitoring the chiral purity of bioactive preparations containing amino acids.

Keywords:

Raman scattering crystalline amino acids chiral phase state 

Notes

FUNDING

This study was supported by the Russian Science Foundation, project no. 19-12-00242.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    M. S. Breen, C. Kemena, P. K. Vlasov, et al., Nature (London, U.K.) 490, 535 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    J. Casado, J. T. Lopez Navarrete, and F. J. Ramirez, J. Raman Spectrosc. 26, 1003 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    S. Jarmelo, I. Reva, P. R. Carey, et al., Vibr. Spectrosc. 43, 395 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Moovendaran, S. A. Martin Britto Dhas, and S. Natarajan, Spectrochim. Acta, Part A 112, 326 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    C.-H. Chuang and Y.-T. Chen, J. Raman Spectrosc. 40, 150 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. K. Kim, M. S. Kim, and S. W. Suh, J. Raman Spectrosc. 18, 171 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    H. I. Lee, S. W. Suh, and M. S. Kim, J. Raman Spectrosc. 19, 491 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    G. Dovbeshko and L. Berezhinsky, J. Mol. Struct. 450, 121 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    B. L. Silva, P. T. C. Freire, F. E. A. Melo, et al., Braz. J. Phys. 28, 19 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    J. A. Lima, Jr., P. T. C. Freire, R. J. C. Lima, et al., J. Raman Spectrosc. 36, 1076 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    G. Zhu, X. Zhu, Q. Fan, et al., Spectrochim. Acta, Part A 78, 1187 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    G. Yao, J. Zhang, and Q. Huang, Spectrochim. Acta, Part A 151, 111 (2015).CrossRefGoogle Scholar
  13. 13.
    J. A. F. Silva, P. T. C. Freire, J. A. Lima, Jr., et al., Vibr. Spectrosc. 77, 35 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Daniel, A. Prakasarao, K. Dornadula, et al., Spectrochim. Acta A 152, 58 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Belyanchikov, V. S. Gorelik, B. P. Gorshunov, and A. Yu. Pyatyshev, Crystallogr. Rep. 62, 290 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    S. Suzuki, T. Ohshima, N. Tamiya, et al., Spectrochim. Acta 15, 969 (1959).ADSCrossRefGoogle Scholar
  17. 17.
    B. Dupuy, C. Castinel, and C. Garrigou-Lagrange, Spectrochim. Acta, Part A 25, 571 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    M. Tipping, K. Viras, and T. A. King, Biopolymers 23, 2891 (1984).CrossRefGoogle Scholar
  19. 19.
    A. L. Jenkins, R. A. Larsen, and T. B. Williams, Spectrochim. Acta, Part A 61, 1585 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    T. Gaillard, A. Trivella, R. H. Stote, et al., Spectrochim. Acta, Part A 150, 301 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Casado, J. T. Lopez Navarrete, and F. J. Ramirez, J. Raman Spectrosc. 26, 1003 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    S. Jarmelo, I. Reva, P. R. Carey, et al., Vibr. Spectrosc. 43, 395 (2007).CrossRefGoogle Scholar
  23. 23.
    K. Moovendaran, M. Britto, S. A. Dhas, and S. Natarajan, Spectrochim. Acta, Part A 112, 326 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    V. S. Gorelik and I. A. Rakhmatullaev, Inorg. Mater. 40, 686 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Downesand and A. Elfick, J. Sensors 10, 1871 (2010).CrossRefGoogle Scholar
  26. 26.
    V. Sikirzhytski, K. Virkler, and I. K. Lednev, J. Sensors 10, 2869 (2010).CrossRefGoogle Scholar
  27. 27.
    V. S. Gorelik and M. F. Umarov, Opt. Spectrosc. 125, 144 (2018).ADSCrossRefGoogle Scholar
  28. 28.
    Yu. P. Voinov, V. S. Gorelik, M. F. Umarov, and S. V. Morozova, Bull. Lebedev Phys. Inst. 38 (11), 328 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    Yu. P. Voinov, V. S. Gorelik, A. Yu. Pyatyshev, and M. F. Umarov, Bull. Lebedev Phys. Inst. 39 (12), 341 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    V. S. Gorelik, A. O. Litvinova, and M. F. Umarov, Bull. Lebedev Phys. Inst. 41 (11), 305 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    M. F. Umarov and V. S. Gorelik, Optical Spectroscopy of Bioactive Drugs (VoGU, Vologda, 2014).Google Scholar
  32. 32.
    Yu. P. Voinov, V. S. Gorelik, M. F. Umarov, and M. E. Yurin, RF Patent No. 2488097 (2013).Google Scholar
  33. 33.
    O. Bakke and A. Mostad, Acta Chem. Scand. 34, 559 (1980).CrossRefGoogle Scholar
  34. 34.
    K. V. Glagolev, Ig. S. Golyak, Il. S. Golyak, A. A. Esakov, V. N. Kornienko, A. N. Morozov, S. E. Tabalin, I. V. Kochikov, and S. I. Svetlichnyi, Opt. Spectrosc. 110, 449 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    K. V. Glagolev, A. N. Morozov, B. P. Nazarenko, S. E. Tabalin, O. V. Chuburkov, S. I. Svetlichnyi, S. P. Nikitaev, A. V. Rozhnov, V. I. Filippov, and A. A. Grigor’ev, Vestn. MGTU Im. N.E. Baumana, Ser. Estestv. Nauki, No. 3, 9 (2005).Google Scholar
  36. 36.
    A. Yu. Boiko, A. A. Grigor’ev, G. V. Matsyuk, A. Yu. Pavlov, P. E. Shlygin, S. K. Dvoruk, M. V. Lel’-kov, A. N. Morozov, S. E. Tabalin, G. V. Shishkin, V. N. Kornienko, I. V. Kochikov, and S. I. Svetlichnyi, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 1, 26 (2004).Google Scholar
  37. 37.
    S. K. Dvoruk, V. N. Kornienko, I. V. Kochikov, M. V. Lel’kov, A. N. Morozov, S. I. Svetlichnyi, and S. E. Tabalin, J. Opt. Technol. 71, 271 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 2, 3 (2007).Google Scholar
  39. 39.
    J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, Biophys. J. 71, 3350 (1996).ADSCrossRefGoogle Scholar
  40. 40.
    M. Langlais, H. A. Tajmir–Riahi, and R. Savoie, Biopolymers 30, 743 (1990).CrossRefGoogle Scholar
  41. 41.
    S. Kint and Y. Tomimatsu, Biopolymers 18, 1073 (1979).CrossRefGoogle Scholar
  42. 42.
    J. M. Benevides, S. A. Overman, and G. J. Thomas, J. Raman Spectrosc. 36, 279 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    K. S. Bortnikov, V. S. Gorelik, and A. A. Esakov, Inorg. Mater. 43, 1313 (2007).CrossRefGoogle Scholar
  44. 44.
    I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Nauka, Moscow, 1988) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Gorelik
    • 1
    • 2
    Email author
  • M. F. Umarov
    • 3
  • Yu. P. Voinov
    • 1
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Vologda State UniversityVologdaRussia

Personalised recommendations