Raman Scattering in Chiral-Pure and Racemic Phases of Tryptophan and Tyrosine Polycrystals
- 9 Downloads
Abstract
Raman spectra of tryptophan and tyrosine polycrystals have been analyzed in a wide spectral range by fiber-optic spectroscopy. The Raman spectra have been recorded with a BWS465-785H spectrometer in the spectral range of 0–2700 cm–1 using a 785-nm cw laser as an excitation source. Parameters of the Raman spectra are compared for three crystalline phase modifications of aromatic amino acids: left-handed, right-handed, and racemic phase. The presence of strong Raman satellites, the characteristics of which change depending on the type of the chiral phase state of amino acid, is found in the low-frequency Raman spectra of tryptophan and tyrosine amino acid lattices. The results obtained can be used for monitoring the chiral purity of bioactive preparations containing amino acids.
Keywords:
Raman scattering crystalline amino acids chiral phase stateNotes
FUNDING
This study was supported by the Russian Science Foundation, project no. 19-12-00242.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES
- 1.M. S. Breen, C. Kemena, P. K. Vlasov, et al., Nature (London, U.K.) 490, 535 (2012).ADSCrossRefGoogle Scholar
- 2.J. Casado, J. T. Lopez Navarrete, and F. J. Ramirez, J. Raman Spectrosc. 26, 1003 (1995).ADSCrossRefGoogle Scholar
- 3.S. Jarmelo, I. Reva, P. R. Carey, et al., Vibr. Spectrosc. 43, 395 (2007).CrossRefGoogle Scholar
- 4.K. Moovendaran, S. A. Martin Britto Dhas, and S. Natarajan, Spectrochim. Acta, Part A 112, 326 (2013).ADSCrossRefGoogle Scholar
- 5.C.-H. Chuang and Y.-T. Chen, J. Raman Spectrosc. 40, 150 (2008).ADSCrossRefGoogle Scholar
- 6.S. K. Kim, M. S. Kim, and S. W. Suh, J. Raman Spectrosc. 18, 171 (1987).ADSCrossRefGoogle Scholar
- 7.H. I. Lee, S. W. Suh, and M. S. Kim, J. Raman Spectrosc. 19, 491 (1988).ADSCrossRefGoogle Scholar
- 8.G. Dovbeshko and L. Berezhinsky, J. Mol. Struct. 450, 121 (1998).ADSCrossRefGoogle Scholar
- 9.B. L. Silva, P. T. C. Freire, F. E. A. Melo, et al., Braz. J. Phys. 28, 19 (1998).ADSCrossRefGoogle Scholar
- 10.J. A. Lima, Jr., P. T. C. Freire, R. J. C. Lima, et al., J. Raman Spectrosc. 36, 1076 (2005).ADSCrossRefGoogle Scholar
- 11.G. Zhu, X. Zhu, Q. Fan, et al., Spectrochim. Acta, Part A 78, 1187 (2011).ADSCrossRefGoogle Scholar
- 12.G. Yao, J. Zhang, and Q. Huang, Spectrochim. Acta, Part A 151, 111 (2015).CrossRefGoogle Scholar
- 13.J. A. F. Silva, P. T. C. Freire, J. A. Lima, Jr., et al., Vibr. Spectrosc. 77, 35 (2015).CrossRefGoogle Scholar
- 14.A. Daniel, A. Prakasarao, K. Dornadula, et al., Spectrochim. Acta A 152, 58 (2016).ADSCrossRefGoogle Scholar
- 15.M. A. Belyanchikov, V. S. Gorelik, B. P. Gorshunov, and A. Yu. Pyatyshev, Crystallogr. Rep. 62, 290 (2017).ADSCrossRefGoogle Scholar
- 16.S. Suzuki, T. Ohshima, N. Tamiya, et al., Spectrochim. Acta 15, 969 (1959).ADSCrossRefGoogle Scholar
- 17.B. Dupuy, C. Castinel, and C. Garrigou-Lagrange, Spectrochim. Acta, Part A 25, 571 (1969).ADSCrossRefGoogle Scholar
- 18.M. Tipping, K. Viras, and T. A. King, Biopolymers 23, 2891 (1984).CrossRefGoogle Scholar
- 19.A. L. Jenkins, R. A. Larsen, and T. B. Williams, Spectrochim. Acta, Part A 61, 1585 (2005).ADSCrossRefGoogle Scholar
- 20.T. Gaillard, A. Trivella, R. H. Stote, et al., Spectrochim. Acta, Part A 150, 301 (2015).CrossRefGoogle Scholar
- 21.J. Casado, J. T. Lopez Navarrete, and F. J. Ramirez, J. Raman Spectrosc. 26, 1003 (1995).ADSCrossRefGoogle Scholar
- 22.S. Jarmelo, I. Reva, P. R. Carey, et al., Vibr. Spectrosc. 43, 395 (2007).CrossRefGoogle Scholar
- 23.K. Moovendaran, M. Britto, S. A. Dhas, and S. Natarajan, Spectrochim. Acta, Part A 112, 326 (2013).ADSCrossRefGoogle Scholar
- 24.V. S. Gorelik and I. A. Rakhmatullaev, Inorg. Mater. 40, 686 (2004).CrossRefGoogle Scholar
- 25.A. Downesand and A. Elfick, J. Sensors 10, 1871 (2010).CrossRefGoogle Scholar
- 26.V. Sikirzhytski, K. Virkler, and I. K. Lednev, J. Sensors 10, 2869 (2010).CrossRefGoogle Scholar
- 27.V. S. Gorelik and M. F. Umarov, Opt. Spectrosc. 125, 144 (2018).ADSCrossRefGoogle Scholar
- 28.Yu. P. Voinov, V. S. Gorelik, M. F. Umarov, and S. V. Morozova, Bull. Lebedev Phys. Inst. 38 (11), 328 (2011).ADSCrossRefGoogle Scholar
- 29.Yu. P. Voinov, V. S. Gorelik, A. Yu. Pyatyshev, and M. F. Umarov, Bull. Lebedev Phys. Inst. 39 (12), 341 (2012).ADSCrossRefGoogle Scholar
- 30.V. S. Gorelik, A. O. Litvinova, and M. F. Umarov, Bull. Lebedev Phys. Inst. 41 (11), 305 (2014).ADSCrossRefGoogle Scholar
- 31.M. F. Umarov and V. S. Gorelik, Optical Spectroscopy of Bioactive Drugs (VoGU, Vologda, 2014).Google Scholar
- 32.Yu. P. Voinov, V. S. Gorelik, M. F. Umarov, and M. E. Yurin, RF Patent No. 2488097 (2013).Google Scholar
- 33.O. Bakke and A. Mostad, Acta Chem. Scand. 34, 559 (1980).CrossRefGoogle Scholar
- 34.K. V. Glagolev, Ig. S. Golyak, Il. S. Golyak, A. A. Esakov, V. N. Kornienko, A. N. Morozov, S. E. Tabalin, I. V. Kochikov, and S. I. Svetlichnyi, Opt. Spectrosc. 110, 449 (2011).ADSCrossRefGoogle Scholar
- 35.K. V. Glagolev, A. N. Morozov, B. P. Nazarenko, S. E. Tabalin, O. V. Chuburkov, S. I. Svetlichnyi, S. P. Nikitaev, A. V. Rozhnov, V. I. Filippov, and A. A. Grigor’ev, Vestn. MGTU Im. N.E. Baumana, Ser. Estestv. Nauki, No. 3, 9 (2005).Google Scholar
- 36.A. Yu. Boiko, A. A. Grigor’ev, G. V. Matsyuk, A. Yu. Pavlov, P. E. Shlygin, S. K. Dvoruk, M. V. Lel’-kov, A. N. Morozov, S. E. Tabalin, G. V. Shishkin, V. N. Kornienko, I. V. Kochikov, and S. I. Svetlichnyi, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 1, 26 (2004).Google Scholar
- 37.S. K. Dvoruk, V. N. Kornienko, I. V. Kochikov, M. V. Lel’kov, A. N. Morozov, S. I. Svetlichnyi, and S. E. Tabalin, J. Opt. Technol. 71, 271 (2004).ADSCrossRefGoogle Scholar
- 38.A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 2, 3 (2007).Google Scholar
- 39.J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, Biophys. J. 71, 3350 (1996).ADSCrossRefGoogle Scholar
- 40.M. Langlais, H. A. Tajmir–Riahi, and R. Savoie, Biopolymers 30, 743 (1990).CrossRefGoogle Scholar
- 41.S. Kint and Y. Tomimatsu, Biopolymers 18, 1073 (1979).CrossRefGoogle Scholar
- 42.J. M. Benevides, S. A. Overman, and G. J. Thomas, J. Raman Spectrosc. 36, 279 (2005).ADSCrossRefGoogle Scholar
- 43.K. S. Bortnikov, V. S. Gorelik, and A. A. Esakov, Inorg. Mater. 43, 1313 (2007).CrossRefGoogle Scholar
- 44.I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Nauka, Moscow, 1988) [in Russian].Google Scholar