Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 742–745 | Cite as

All-Optical Quantum Sensor of the Magnetic Field Deflection

  • S. P. Dmitriev
  • A. S. Pazgalev
  • M. V. Petrenko
  • A. K. VershovskiiEmail author
PRECISION OPTICAL MEASUREMENTS AND METROLOGY
  • 17 Downloads

Abstract

A method is proposed for precise measurement of the deflection of the magnetic field vector. This method does not require the use of artificially created magnetic fields; a scheme of an all-optical quantum sensor based on this method has been experimentally tested. The proposed method does not involve the use of radiofrequency field, since it is based on measuring the polarization properties of an oriented paramagnetic medium and does not use the phenomenon of magnetic resonance. However, the inclusion of a resonant radiofrequency field into the proposed scheme allows the information about the angle of the magnetic field vector to be supplemented with information about its module. The proposed method maintains operability and provides the same angular sensitivity of the order of tens of angular milliseconds in a wide range of magnetic fields, from hundreds of nT to hundreds of µT and above.

Keywords:

magnetic field measurement optical quantum sensor polarization rotation 

Notes

ACKNOWLEDGMENTS

The authors are grateful to V.S. Zapasskii and E.B. Aleksandrov for their interest in the work and useful discussions.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    M. D. Prouty, R. Johnson, I. Hrvoic, and A. K. Vershovskiy, in Optical Magnetometry, Ed. by D. Budker and D. F. J. Kimball (Cambridge Univ. Press, Cambridge, 2013), p. 319.Google Scholar
  2. 2.
    E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, Nature (London, U.K.) 555, 657 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, Phys. Rev. Lett. 89, 130801 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    A. K. Vershovskii, Tech. Phys. Lett. 37, 140 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, Opt. Commun. 12, 400 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, Rev. Mod. Phys. 74, 1153 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    W. E. Bell and A. L. Bloom, Phys. Rev. 107, 1559 (1957).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Ossadtchi, N. K. Kulachenkov, D. S. Chuchelov, S. P. Dmitriev, A. S. Pazgalev, M. V. Petrenko, and A. K. Vershovskii, in Proceedings of the 2018 International Conference on Laser Optics ICLO 2018 (IEEE, NY, 2018), p. 543.  https://doi.org/10.1109/LO.2018.8435740

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. P. Dmitriev
    • 1
  • A. S. Pazgalev
    • 1
  • M. V. Petrenko
    • 1
  • A. K. Vershovskii
    • 1
    Email author
  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations