Advertisement

Optics and Spectroscopy

, Volume 127, Issue 1, pp 40–48 | Cite as

In Which Cases and Why the Standard Model of Tunneling Two-Level Systems Describes the Low-Temperature Inner Dynamics of Real Glasses Inadequately

  • Yu. G. VainerEmail author
SPECTROSCOPY OF CONDENSED STATES
  • 15 Downloads

Abstract

Experiments carried out in recent years using single-molecule spectroscopy to study the low-temperature dynamics of some molecular solid-state media with a disordered internal structure made it possible to obtain new information on the dynamics of such media at the local level. In some substances, the time-dependent behavior of the majority of individual spectra of single fluorescent molecules introduced into the studied medium as a local spectral probe corresponded to the predictions of the standard model of tunneling two-level systems. In others, the behavior of most of the spectra of single molecules was more complicated, which it is difficult to describe in the framework of the standard model. This paper is devoted to the analysis of the results of studies of low-temperature spectral dynamics of single fluorescent molecules in a number of disordered molecular systems (amorphous polyisobutylene, toluene, cumene, propylene carbonate). The observed deviations from the predictions of the theory are associated with the microstructure of the systems under study and the sample shape. Possible reasons for the deviations of the observed local spectral dynamics from the predictions of the standard model of tunneling two-level systems are discussed. Inadequately.

Keywords:

amorphous media glass single-molecule spectroscopy tunneling two-level systems low-temperature dynamics fluorescent molecules 

Notes

FUNDING

This work was performed in the framework of a state order.

CONFLICT OF INTEREST

The author states that he has no conflict of interest.

REFERENCES

  1. 1.
    R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    Amorphous Solids: Low Temperature Properties, Ed. by W. A. Phillips (Springer, Berlin, Heidelberg, 1981).Google Scholar
  3. 3.
    P. W. Anderson, Science (Washington, DC, U. S.) 267, 1609 (1995).  https://doi.org/10.1126/science.267.5204.1609-a CrossRefGoogle Scholar
  4. 4.
    L. Berthier, B. Giroli, J. P. Bouchaud, L. Cipeletti, and W. van Saarloos, Dynamical Heterogeneities in Glasses, Colloids and Granular Media (Oxford Univ. Press, Oxford, 2011).  https://doi.org/10.1093/ACPROF:OSO/9780199691470.001.0001 CrossRefGoogle Scholar
  5. 5.
    P. G. Wolynes and V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment and Applications (Wiley, Hoboken, NJ, 2012).CrossRefGoogle Scholar
  6. 6.
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    M. Schechter, P. Nalbach, and A. L. Burin, New J. Phys. 20, 063048 (2018).  https://doi.org/10.1088/1367-2630/aac930 ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Vorobyov, A. Yu. Kazakov, V. V. Soshenko, A. A. Korneev, M. Y. Shalaginov, S. V. Bolshedvorskii, V. N. Sorokin, A. V. Divochiy, Yu. B. Vakhtomin, K. V. Smirnov, B. M. Voronov, V. M. Shalaev, A. V. Akimov, and G. N. Goltsman, Opt. Mater. Express 7, 513 (2017).  https://doi.org/10.1364/OME.7.000513 ADSCrossRefGoogle Scholar
  10. 10.
    Single-Molecule Optical Detection, Imaging and Spectroscopy, Ed. by Th. Basché, W. E. Moerner, M. Orrit, and U. P. Wild (Wiley-VCH, Weinheim, New York, 1996).Google Scholar
  11. 11.
    W. E. Moerner, Y. Shechtman, and Q. Wang, Faraday Discuss. 184, 9 (2015).  https://doi.org/10.1039/C5FD00149H ADSCrossRefGoogle Scholar
  12. 12.
    W. P. Ambrose and W. E. Moerner, Nature (London, U.K.) 349, 225 (1991).  https://doi.org/10.1038/349225A0 ADSCrossRefGoogle Scholar
  13. 13.
    J. Tittel, R. Kettner, Th. Basché, C. Bräuchle, H. Quante, and K. Müllen, J. Lumin. 64, 1 (1995).  https://doi.org/10.1016/0022-2313(95)00002-8 CrossRefGoogle Scholar
  14. 14.
    A. M. Boiron, Ph. Tamarat, B. Lounis, R. Brown, and M. Orrit, Chem. Phys. 247, 119 (1999).  https://doi.org/10.1016/S0301-0104(99)00140-8 CrossRefGoogle Scholar
  15. 15.
    Yu. G. Vainer, A. V. Naumov, M. Bauer, and L. Kador, J. Lumin. 127, 213 (2007).  https://doi.org/10.1016/J.LUMIN.2007.02.026 CrossRefGoogle Scholar
  16. 16.
    Yu. G. Vainer, A. V. Naumov, and L. Kador, Phys. Rev. B 77, 224202 (2008).  https://doi.org/10.1103/PHYSREVB.77.224202 ADSCrossRefGoogle Scholar
  17. 17.
    I. Yu. Eremchev, Yu. G. Vainer, A. V. Naumov, and L. Kador, Phys. Chem. Chem. Phys. 13, 1843 (2011).  https://doi.org/10.1039/C1CP90002A CrossRefGoogle Scholar
  18. 18.
    A. V. Naumov, Yu. G. Vainer, and L. Kador, Phys. Rev. Lett. 98, 145501 (2007).  https://doi.org/10.1103/PHYSREVLETT.98.145501 ADSCrossRefGoogle Scholar
  19. 19.
    Ya. I. Sobolev, A. V. Naumov, Yu. G. Vainer, and L. Kador, J. Chem. Phys. 140, 204907 (2014). doi 063/1.4879062Google Scholar
  20. 20.
    Yu. G. Vainer, Ya. I. Sobolev, A. V. Naumov, I. S. Osad’ko, and L. Kador, Faraday Discuss. 184, 237 (2015).  https://doi.org/10.1039/C5FD00055F ADSCrossRefGoogle Scholar
  21. 21.
    J. Lisenfeld, G. J. Grabovskij, C. Muller, J. H. Cole, G. Weiss, and A. U. Ustinov, Nat. Commun. 6, 6182 (2015).  https://doi.org/10.1038/NCOMMS7182 ADSCrossRefGoogle Scholar
  22. 22.
    E. Geva and J. L. Skinner, J. Phys. Chem. B 109, 4920 (1998).  https://doi.org/10.1063/1.477103 CrossRefGoogle Scholar
  23. 23.
    O. Asban, I. A. Amir, Y. Imry, and M. Schechtert, Phys. Rev. B 95, 144207 (2017).  https://doi.org/10.1103/PHYSREVB.95.144207 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Spectroscopy, Russian Academy of ScienceTroitskMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations