Optics and Spectroscopy

, Volume 127, Issue 1, pp 107–112 | Cite as

Luminescence and Nonlinear Optical Properties of Borates LnGa3(BO3)4 (Ln = Nd, Sm, Tb, Er, Dy, or Ho)

  • N. N. Kuz’min
  • K. N. BoldyrevEmail author
  • N. I. Leonyuk
  • S. Yu. Stefanovich
  • M. N. Popova


Luminescence spectra of single crystals of rare-earth gallium borates LnGa3(BO3)4 (Ln = Nd, Sm, Tb, Er, Dy, or Ho) at room (300 K) and cryogenic (10 K) temperatures are presented for the first time. Photoluminescence has been recorded in the wavelength range of 470–5000 nm (2000–21 300 cm–1) with a high spectral resolution (down to 0.1 cm–1) upon excitation by different diode lasers. The spectra obtained cannot be unambiguously interpreted within one luminescent center, which can be due to the presence of defects and/or inclusions of other crystalline phases. The optical nonlinearity of rare-earth–gallium borates has been estimated using the Kurtz–Perry powder technique. The typical intensities of the second-harmonic generation in gallium borate powders are 30–40 (with respect to quartz), and the optical nonlinearity is as good as the nonlinearity of the efficient rare-earth aluminum borate YAl3(BO3)4.


rare-earth gallium borate crystals luminescence spectra second-harmonic generation 



Spectroscopic analysis was performed on the Unique Scientific System Multifunctional High-Resolution Wide-Range Spectroscopy at the Institute for Spectroscopy, Russian Academy of Sciences [27].


This study was supported by the Russian Foundation for Basic Research, project no. 18-32-20142.


  1. 1.
    A. A. Ballman, Am. Mineral. 47, 1380 (1962).Google Scholar
  2. 2.
    A. D. Mills, Inorg. Chem. 1, 960 (1962). CrossRefGoogle Scholar
  3. 3.
    N. I. Leonyuk and L. I. Leonyuk, Prog. Cryst. Growth Charact. Mater. 31, 179 (1995). CrossRefGoogle Scholar
  4. 4.
    E. L. Belokoneva and T. I. Timchenko, Sov. Phys. Crystallogr. 28, 658 (1983).Google Scholar
  5. 5.
    E. L. Belokoneva, N. I. Leonyuk, A. V. Pashkova, and T. I. Timchenko, Sov. Phys. Crystallogr. 33, 765 (1988).Google Scholar
  6. 6.
    E. L. Belokoneva, M. A. Simonov, A. V. Pashkova, T. I. Timchenko, and N. V. Belov, Sov. Phys. Dokl. 25, 948 (1980).ADSGoogle Scholar
  7. 7.
    P. A. Plachinda and E. L. Belokoneva, Cryst. Res. Technol. 43, 157 (2008). CrossRefGoogle Scholar
  8. 8.
    P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, Opt. Commun. 207, 315 (2002). ADSCrossRefGoogle Scholar
  9. 9.
    P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, Opt. Commun. 195, 431 (2001). ADSCrossRefGoogle Scholar
  10. 10.
    K. N. Gorbachenya, V. T. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, Opt. Lett. 41, 918 (2016). ADSCrossRefGoogle Scholar
  11. 11.
    E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, Appl. Phys. Lett. 87, 211108 (2005). ADSCrossRefGoogle Scholar
  12. 12.
    A. L. Moura, L. J. Maia, A. S. Gomes, and C. B. de Araujo, Opt. Mater. 62, 593 (2016). ADSCrossRefGoogle Scholar
  13. 13.
    G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, E. Kh. Mamadzhanova, A. V. Danil’chik, and E. V. Lutsenko, JETP Lett. 92, 497 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    B. Malysa, A. Meijerink, and T. Justel, J. Lumin. 171, 246 (2016). CrossRefGoogle Scholar
  15. 15.
    W. Ryba-Romanowski, R. Lisiecki, E. Beregi, and I. R. Martin, J. Lumin. 167, 163 (2015). CrossRefGoogle Scholar
  16. 16.
    G. L. Reddy, L. R. Moorthy, P. Packiyaraj, and B. C. Jamalaiah, Opt. Mater. 35, 2138 (2013). ADSCrossRefGoogle Scholar
  17. 17.
    M. Acikgöz and P. Gnutek, Opt. Mater. 36, 1311 (2014). ADSCrossRefGoogle Scholar
  18. 18.
    S. Ilas, P. Loiseau, G. Aka, and T. Taira, Opt. Express 22, 30325 (2014). ADSCrossRefGoogle Scholar
  19. 19.
    E. L. Belokoneva, L. I. Al’shinskaya, M. A. Simonov, N. I. Leonyuk, T. I. Timchenko, and N. V. Belov, J. Struct. Chem. 19, 332 (1978). CrossRefGoogle Scholar
  20. 20.
    L. I. Al’Shinskaya, N. I. Leonyuk, and T. I. Timchenko, Krist. Tech. 14, 897 (1979). CrossRefGoogle Scholar
  21. 21.
    E. Beregi, A. Watterich, J. Madarasz, M. Toth, and K. Polgár, J. Cryst. Growth 237, 874 (2002). ADSCrossRefGoogle Scholar
  22. 22.
    E. Y. Borovikova, K. N. Boldyrev, S. M. Aksenov, E. A. Dobretsova, V. S. Kurazhkovskaya, N. I. Leonyuk, A. E. Savon, D. V. Deyneko, and D. A. Ksenofontov, Opt. Mater. 49, 304 (2015). ADSCrossRefGoogle Scholar
  23. 23.
    C. K. Kurts and T. T. Perry, J. Appl. Phys. 39, 3798 (1968). ADSCrossRefGoogle Scholar
  24. 24.
    D. A. Beskorovaynaya, D. V. Deyneko, O. V. Baryshnikova, S. Y. Stefanovich, and B. I. Lazoryak, J. Alloys Compd. 674, 323 (2016). CrossRefGoogle Scholar
  25. 25.
    K. N. Boldyrev, M. N. Popova, M. Bettinelli, V. L. Temerov, I. A. Gudim, L. N. Bezmaternykh, P. Loiseau, G. Aka, and N. I. Leonyuk, Opt. Mater. 34, 1885 (2012). ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Prokhorov, Handbook of Lasers (Sov. Radio, Moscow, 1978), Vols. 1, 2.Google Scholar
  27. 27.
    Unique Scientific Installations. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. N. Kuz’min
    • 1
    • 2
  • K. N. Boldyrev
    • 1
    • 3
    Email author
  • N. I. Leonyuk
    • 2
  • S. Yu. Stefanovich
    • 4
  • M. N. Popova
    • 1
  1. 1.Institute of Spectroscopy, Russian Academy of SciencesMoscowTroitskRussia
  2. 2.Faculty of Geology, Moscow State UniversityMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia
  4. 4.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations