Advertisement

Optics and Spectroscopy

, Volume 127, Issue 1, pp 61–68 | Cite as

Isotope Selective Control over Clustering of SF6 Molecules and Dissociation of (SF6)mArn van der Waals Clusters Using an IR Laser

  • V. M. Apatin
  • V. N. Lokhman
  • G. N. MakarovEmail author
  • A. L. Malinovskii
  • A. N. Petin
  • N.-D. D. Ogurok
  • D. G. PoydashevEmail author
  • E. A. Ryabov
LASER PHYSICS AND LASER OPTICS
  • 3 Downloads

Abstract

We present the results of an investigation into the interaction of SF6 molecules and clusters in a molecular beam with resonant IR laser radiation at different stages of the beam evolution along the axis of its propagation. The beam has been formed as a result of gas-dynamic expansion of a mixture of SF6 with argon carrier gas during expansion from a pulsed nozzle. The experimental setup and the investigation method are described. It has been shown that selective vibrational excitation of SF6 molecules with a specific sulfur isotope by a CO2 laser near the nozzle edge causes suppression of the clustering process of these isotopic molecules. Selective IR excitation of clusters under the conditions of the formed cluster beam leads to isotopically selective dissociation of clusters. Depending on the experimental conditions including different distances of the irradiation zone of particles from the nozzle edge, the results of measuring the efficiency and selectivity of molecular clustering suppression and cluster dissociation processes are presented. It has been shown that both of these processes make it possible to achieve high selectivity values for the 32S and 34S sulfur isotopes. In the case in which the clustering of SF6 molecules was selectively suppressed, selectivity values α ≥ 25–30 have been obtained. Upon selective dissociation of (SF6)2 dimers under similar expansion conditions of the gas mixture, selectivity values α ≥ 20–25 for 32SF632SF6 dimers with respect to 34SF632SF6 dimers have been obtained. Particular attention has been paid to measurements at a high dilution of SF6 in argon under conditions of predominant formation of (SF6)mArn mixed clusters. The potential of using studied processes as a basis for the technology of the laser isotope separation are discussed.

Keywords:

atoms molecules clusters molecular and cluster beams laser spectroscopy laser-induced selective processes in molecules and clusters laser isotope separation 

REFERENCES

  1. 1.
    G. N. Makarov, Phys. Usp. 58, 670 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    J. W. Eerkens, Nucl. Sci. Eng. 150, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    J. W. Eerkens, Laser Part. Beams 23, 225 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 103, 697 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    G. N. Makarov, Phys. Usp. 49, 1131 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    J. Kim, J. W. Eerkens, and W. H. Miller, Nucl. Sci. Eng. 156, 219 (2007).CrossRefGoogle Scholar
  7. 7.
    J. Kim et al., in Proceedings of the Spring Meeting, Transactions of the Korean Nuclear Society, Jeju, Korea, 2009.Google Scholar
  8. 8.
    J. W. Eerkens and J. Kim, AIChE J. 56, 2331 (2010).Google Scholar
  9. 9.
    G. N. Makarov and A. N. Petin, JETP Lett. 93, 109 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    K. A. Lyakhov and H. J. Lee, Appl. Phys. B 111, 261 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 119, 398 (2014).CrossRefGoogle Scholar
  12. 12.
    K. A. Lyakhov and H. J. Lee, J. Laser Appl. 27, 022008 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    K. A. Lyakhov, H. J. Lee, and A. N. Pechen, Sep. Purif. Technol. 176, 402 (2017).CrossRefGoogle Scholar
  14. 14.
    V. N. Bagratashvili et al., Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Acad., Chur, 1985).Google Scholar
  15. 15.
    Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Vol. 35 of Topics in Current Physics, Ed. by C. D. Cantrell (Springer, Berlin, 1986).Google Scholar
  16. 16.
    J. L. Lyman, Laser Spectroscopy and its Applications, Vol. 11 of Optical Engineering, Ed. by L. J. Radziemski, R. W. Solarz, and J. A. Raisner (Marcel Dekker, New York, 1987), p. 417.Google Scholar
  17. 17.
    G. N. Makarov, Phys. Usp. 48, 37 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    V. Yu. Baranov et al., in Proceedings of the 2nd All-Russia Conference on Physicochemical Processes during Selection of Atoms and Molecules, Ed. by V. Yu. Baranov and Yu. A. Kolesnikov (TsNIIatominform, Moscow, 1997), p. 21.Google Scholar
  19. 19.
    V. S. Letokhov and E. A. Ryabov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (IzdAT, Moscow, 2000), p. 329 [in Russian].Google Scholar
  20. 20.
    V. Yu. Baranov and A. P. Dyad’kin, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (I-zdAT, Moscow, 2000), p. 343 [in Russian].Google Scholar
  21. 21.
    V. S. Letokhov and E. A. Ryabov, The Optics Encyclopedia. Basic Faundations and Practical Applications, Ed. by Th. G. Brown, K. Kreath, H. Kogelnik, M. A. Kriss, J. Schmith, and M. J. Weber (Wiley-VCH, Weinheim, 2004), Vol. 2, p. 1015.Google Scholar
  22. 22.
    J.-M. Zellweger, J. M. Philippoz, P. Melinon, R. Monot, and H. van den Bergh, Phys. Rev. Lett. 52, 522 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    V. M. Apatin, G. N. Makarov, N.-D. Ogurok, A. N. Petin, and E. A. Ryabov, J. Exp. Theor. Phys. 127, 244 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    G. N. Makarov, N.-D. Ogurok, and A. N. Petin, Quantum Electron. 48, 667 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 125, 531 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. Ogurok, and E. A. Ryabov, Quantum Electron. 48, 157 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    R. S. McDowell, B. J. Krohn, H. Flicker, and M. C. Vasquez, Spectrochim. Acta, A 42, 351 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    J. Geraedts, S. Setiadi, S. Stolte, and J. Reuss, Chem. Phys. Lett. 78, 277 (1981).ADSCrossRefGoogle Scholar
  29. 29.
    J. Geraedts, S. Stolte, and J. Reuss, Z. Phys. A 304, 167 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    J. Geraedts, M. Waayer, S. Stolte, and J. Reuss, Faraday Discuss. Chem. Soc. 73, 375 (1982).CrossRefGoogle Scholar
  31. 31.
    P. Melinon, R. Monot, J.-M. Zellweger, and H. Bergh, Chem. Phys. 84, 345 (1984).CrossRefGoogle Scholar
  32. 32.
    G. Baldacchini, S. Marchetti, and V. Montelatici, J. Mol. Spectrosc. 91, 80 (1982).ADSCrossRefGoogle Scholar
  33. 33.
    R. J. Jensen, J. G. Marinuzzi, C. P. Robinson, and S. D. Rockwood, Laser Focus 12, 51 (1976).ADSGoogle Scholar
  34. 34.
    J. M. Philippoz, B. Calpini, R. Monot, and H. van den Bergh, Ber. Bunsen-Ges. Phys. Chem. 89, 281 (1985).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. M. Apatin
    • 1
  • V. N. Lokhman
    • 1
  • G. N. Makarov
    • 1
    Email author
  • A. L. Malinovskii
    • 1
  • A. N. Petin
    • 1
    • 2
  • N.-D. D. Ogurok
    • 1
  • D. G. Poydashev
    • 1
    Email author
  • E. A. Ryabov
    • 1
  1. 1.Institute for Spectroscopy, Russian Academy of SciencesTroitskMoscowRussia
  2. 2.Troitsk Institute for Innovation and Fusion ResearchTroitskMoscowRussia

Personalised recommendations