Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 777–782 | Cite as

Factors Influencing the Formation of Langmuir Films of CdSe/ZnS Colloidal Quantum Dots

  • S. A. SavinEmail author
  • A. Yu. Dubavik
NANOPHOTONICS
  • 18 Downloads

Abstract

We prepared thin films containing colloidal quantum dots CdSe/ZnS of four different mean core sizes, with photoluminescence maximum in the range 530–610 nm, and covered by different ligands, on the surface of water by the Langmuir method. We obtained Surface pressure–Area curves (π–A isotherms) of the formed films at room temperature under different conditions: the compression speed and the waiting time before the film was compressed. In the course of the studies, we established that the type of ligand that passivates the surface of the quantum dots greatly influences the formation of CdSe/ZnS Langmuir films, and that the compression speed and the waiting time before the film is compressed do not seriously affect the formation of the films.

Notes

ACKNOWLEDGMENTS

This study was supported by the Federal Target Program for Research and Development of the Ministry of Education and Science of the Russian Federation, grant  no. 14.587.21.0047 (ID RFMEFI58718X0047). S.A.S. thanks Dr. A.L. Simões Gamboa for the conception and supervision of this work.

REFERENCES

  1. 1.
    H. Moehwald and G. Brezesinski, Langmuir 32, 10445 (2016). doi 10.1021/acs.langmuir.6b02518CrossRefGoogle Scholar
  2. 2.
    L. M. Blinov, V. M. Fridkin, S. P. Palto, A. V. Bune, P. A. Dowben and S. Ducharme, Phys. Usp. 43, 243 (2000). doi 10.1070/PU2000v043n03ABEH000639ADSCrossRefGoogle Scholar
  3. 3.
    C. Zylberajch, A. Ruaudel-Teixier, and A. Barraud, Synth. Met. 27, 609 (1988). doi 10.1016/0379-6779(88)90207-XCrossRefGoogle Scholar
  4. 4.
    T. Di Luccio, F. Antolini, P. Aversa, G. Scalia, and L. Tapfer, Carbon 42, 1119 (2004). doi 10.1016/j.carbon.2003.12.005CrossRefGoogle Scholar
  5. 5.
    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ri-card, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros, J. Opt. Soc. Am. B 10, 100 (1993). doi 10.1364/JOSAB.10.000100ADSCrossRefGoogle Scholar
  6. 6.
    A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996). doi 10.1021/jp9535506CrossRefGoogle Scholar
  7. 7.
    A. V. Fedorov, A. V. Baranov, and K. Inoue, Phys. Rev. B 56, 7491 (1997). doi 10.1103/PhysRevB.56.7491ADSCrossRefGoogle Scholar
  8. 8.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003). doi 10.1021/cm034081kCrossRefGoogle Scholar
  9. 9.
    A. P. Litvin, S. A. Cherevkov, A. Dubavik, A. A. Ba-baev, P. S. Parfenov, A. L. Simões Gamboa, A. V. Fe-dorov, and A. V. Baranov, J. Phys. Chem. C 122, 20469 (2018). doi 10.1021/acs.jpcc.8b06059Google Scholar
  10. 10.
    A. P. Litvin, P. S. Parfenov, E. V. Ushakova, T. A. Vorsina, A. L. Simões Gamboa, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 119, 17016 (2015). doi 10.1021/acs.jpcc.5b05447CrossRefGoogle Scholar
  11. 11.
    A. V. Rodina, A. A. Golovatenko, E. V. Shornikova, D. R. Yakovlev, and Al. L. Efros, Semiconductors 52, 572 (2018). doi 10.1134/S1063782618050263ADSCrossRefGoogle Scholar
  12. 12.
    J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, and V. I. Klimov, Chem. Rev. 116, 10513 (2016). doi 10.1021/acs.chemrev.6b00169CrossRefGoogle Scholar
  13. 13.
    A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, Solid State Commun. 56, 921 (1985). doi 10.1016/S0038-1098(85)80025-9ADSCrossRefGoogle Scholar
  14. 14.
    E. N. Bodunov, M. N. Berberan-Santos, and L. Pogliani, Opt. Spectrosc. 111, 61 (2011). doi 10.1134/S0030400X11070046ADSCrossRefGoogle Scholar
  15. 15.
    X. Huang, L. Jing, S. V. Kershaw, X. Wei, H. Ning, X. Sun, A. L. Rogach, and M. Gao, J. Phys. Chem. C 122, 11109 (2018). doi 10.1021/acs.jpcc.8b01053CrossRefGoogle Scholar
  16. 16.
    E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simões Gamboa, Ann. Phys. (Berlin) 528, 272 (2016). doi 10.1002/andp.201500350ADSCrossRefGoogle Scholar
  17. 17.
    B. Zeng, G. Palui, C. Zhang, N. Zhan, W. Wang, X. Ji, B. Chen, and H. Mattoussi, Chem. Mater. 30, 225 (2018). doi 10.1021/acs.chemmater.7b04204CrossRefGoogle Scholar
  18. 18.
    A. O. Orlova, M. A. Kurochkina, Y. A. Gromova, V. G. Maslov, E. N. Bodunov, A. V. Baranov, and A. V. Fedorov, Proc. SPIE Nanophoton. 9126, 912617 (2014). doi 10.1117/12.205217010.1117/12.2052170Google Scholar
  19. 19.
    E. N. Bodunov, Yu. A. Antonov, and A. L. Simões Gamboa, J. Chem. Phys. 146, 114102 (2017). doi 10.1063/1.4978396ADSCrossRefGoogle Scholar
  20. 20.
    E. N. Bodunov and A. L. Simões Gamboa, Semiconductors 52, 587 (2018). doi 10.1134/S1063782618050044ADSCrossRefGoogle Scholar
  21. 21.
    E. N. Bodunov and A. L. Simões Gamboa, J. Phys. Chem. C 122, 10637 (2018). doi 10.1021/acs.jpcc.8b02779CrossRefGoogle Scholar
  22. 22.
    B. O. Dabbousi, C. B. Murray, M. F. Rubner, and M. G. Bawendi, Chem. Mater. 6, 216 (1994). doi 10.1021/cm00038a020CrossRefGoogle Scholar
  23. 23.
    M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, J. Phys. Chem. B 107, 13782 (2003). doi 10.1021/jp036497rCrossRefGoogle Scholar
  24. 24.
    Y. Justo, I. Moreels, K. Lambert, and Z. Hens, Nanotechnology 21, 295606 (2010). doi 10.1088/0957-4484/21/29/295606CrossRefGoogle Scholar
  25. 25.
    K. Lambert, Y. Justo, J. S. Kamal, and Z. Hens, Angew. Chem. Int. Ed. 50, 12058 (2011). doi 10.1002/anie.201105991CrossRefGoogle Scholar
  26. 26.
    C. Radhakrishnan, M. K. F. Lo, C. M. Knobler, M. A. Garcia-Garibay, and H. G. Monbouquette, Langmuir 27, 2099 (2011). doi 10.1021/la104244xCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Optical Physics and Modern Natural Science, ITMO UniversitySt. PetersburgRussia

Personalised recommendations