Optics and Spectroscopy

, Volume 125, Issue 5, pp 632–639 | Cite as

Studying the Optical Properties of Hexogen–Aluminum Composites

  • B. P. Aduev
  • G. M. Belokurov
  • D. R. Nurmukhametov
  • I. Yu. Liskov
  • N. V. Nelyubina
  • A. A. Zvekov
  • A. V. KalenskiiEmail author


Using the photometric sphere, optical characteristics of compressed hexogen tablets (with a density of 1.78 g/cm3) containing aluminum nanoparticles (with a mean diameter of 100 nm) have been studied. A stationary radiation source with a wavelength of 532 nm was used. Coefficients of transmission, diffuse reflection, and absorption of samples have been measured as functions of the mass concentration of aluminum nanoparticles (within the range from 0 to 0.2%). The experimental dependences have been modeled based on solving the equation of monochromatic radiation transfer. The observed dependences of optical properties of the samples under study are satisfactorily described when taking into account the oxide shell on the nanoparticle surface.



This study was supported by the Russian Foundation for Basic Research (project no. 18-03-00421 A, fundamental scientific research (GP 14) on the subject (project) “V.49.1.5. Studying Mechanisms of Transformation of Electron-Beam and Laser Radiation Energy in High-Energy Materials and Coals for Creating Materials for Special-Purpose Components and Devices,” registry number AAAA-A17-117041910150-2), and the Ministry of Education and Science of the Russian Federation (task no. 3.5363.2017/8.9).


  1. 1.
    M. A. Ilyushin, G. G. Savenkov, and A. S. Mazur, Industrial Explosions, The School-Book (Lan’, St. Petersburg, 2017) [in Russian].Google Scholar
  2. 2.
    T. J. Krupa, Opt. Photon. News 11, 16 (2000). doi 10.1364/OPN.11.6.000016CrossRefGoogle Scholar
  3. 3.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, A. P. Nikitin, and A. V. Kalenskii, Combust., Explos. Shock Waves 52, 713 (2016). doi 10.1134/S0010508216060113CrossRefGoogle Scholar
  4. 4.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, A. P. Nikitin, and R. Yu. Kovalev, Russ. J. Phys. Chem. B 10, 615 (2016). doi 10.1134/S1990793116040023CrossRefGoogle Scholar
  5. 5.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, and I. Y. Liskov, Combust., Explos. Shock Waves 51, 472 (2015). doi 10.1134/S0010508215040115CrossRefGoogle Scholar
  6. 6.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, and N. V. Nelyubina, Combust., Explos. Shock Waves 50, 578 (2014). doi 10.1134/S001050821405013XCrossRefGoogle Scholar
  7. 7.
    V. I. Tarzhanov, V. I. Sdobnov, A. D. Zinchenko, and A. I. Pogrebov, Combust., Explos. Shock Waves 53, 229 (2017). doi 10.1134/S0010508217020149CrossRefGoogle Scholar
  8. 8.
    E. D. Aluker, N. L. Aluker, A. G. Krechetov, A. Yu. Mitrofanov, D. R. Nurmukhametov, and V. N. Shvaiko, Russ. J. Phys. Chem. B 5, 67 (2011). doi 10.1134/S1990793111010027CrossRefGoogle Scholar
  9. 9.
    E. D. Aluker, A. G. Krechetov, A. Y. Mitrofanov, D. R. Nurmukhametov, and M. M. Kuklja, J. Phys. Chem. C 115, 6893 (2011). doi 10.1021/jp1089195CrossRefGoogle Scholar
  10. 10.
    B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, and R. I. Furega, Combust., Explos. Shock Waves 51, 347 (2015). doi 10.1134/S0010508215030107CrossRefGoogle Scholar
  11. 11.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, A. P. Nikitin, N. V. Nelyubina, G. M. Belokurov, and A. V. Kalenskii, Instrum. Exp. Tech. 58, 765 (2015). doi 10.7868/S0032816215050018CrossRefGoogle Scholar
  12. 12.
    Explosives, Ed. by L. V. Fomicheva (RFYaTs-VNIIEF, Sarov, 2007) [in Russian].Google Scholar
  13. 13.
    A. D. Zinchenko, A. I. Pogrebov, V. I. Tarzhanov, and B. B. Tokarev, Combust., Explos. Shock Waves 28, 524 (1992). doi 10.1007/BF00755727CrossRefGoogle Scholar
  14. 14.
    P. M. Tikhodeev, Light Measurements (Photometry) (Moscow, Leningrad, 1962) [in Russian].Google Scholar
  15. 15.
    C. M. Gardner, S. L. Jacques, and A. J. Welch, Lasers Surg. Med. 18, 129 (1996). doi 10.1002/(SICI)1096-9101(1996)18:2<129::AID-LSM2>3Google Scholar
  16. 16.
    S. L. Jacques, Photochem. Photobiol. 67, 23 (1998). doi 10.1111/j.1751-1097.1998.tb05161.xCrossRefGoogle Scholar
  17. 17.
    A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, and S. E. Skipetrov, Quantum Electron. 29, 1054 (1999). doi 10.1070/QE1999v029n12ABEH001630ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, and N. V. Gazenaur, Russ. Phys. J. 59, 263 (2016). doi 10.1007/s11182-016-0766-zCrossRefGoogle Scholar
  19. 19.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, New York, 1999).CrossRefzbMATHGoogle Scholar
  20. 20.
    R. A. Isbell and M. Q. Brewster, Propellants, Explosives, Pyrotech. 23, 218 (1998). doi 10.1002/(SICI)1521-4087(199808)23:4<218::AID-PREP218>3.0.CO;2-ACrossRefGoogle Scholar
  21. 21.
    J. Heino, S. Arridge, J. Sikora, and E. Somersalo, Phys. Rev. E 68, 031908 (2003). doi 10.1103/PhysRevE.68.031908ADSCrossRefGoogle Scholar
  22. 22.
    V. P. Budak and S. V. Korkin, J. Quant. Spectrosc. Radiat. Transf. 109, 1347 (2008). doi 10.1016/j.jqsrt.2008Google Scholar
  23. 23.
    G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, J.  Phys. A 39, 115 (2006). doi 10.1088/0305-4470/39/1/009ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. K. Cooper, Ch. D. Grant, and J. Z. Zhang, J. Phys. Chem. A 117, 6043 (2013). doi 10.1021/jp312492vCrossRefGoogle Scholar
  25. 25.
    P. M. Pakhomov, S. D. Khizhnyak, and V. E. Sitnikova, J. Appl. Spectrosc. 84, 837 (2017). doi 10.1007/s10812-017-0553-9ADSCrossRefGoogle Scholar
  26. 26.
    A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951). doi 10.1063/1.1699834ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. V. Kalenskii, A. A. Zvekov, E. V. Galkina, and D. R. Nurmuhametov, Comput. Opt. 42, 254 (2018). doi 10.18287/2412-6179-2018-42-2-254-262ADSCrossRefGoogle Scholar
  28. 28.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985), Vol. 1, p. 405.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. P. Aduev
    • 1
  • G. M. Belokurov
    • 1
  • D. R. Nurmukhametov
    • 1
  • I. Yu. Liskov
    • 1
  • N. V. Nelyubina
    • 1
  • A. A. Zvekov
    • 1
  • A. V. Kalenskii
    • 2
    Email author
  1. 1.Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of SciencesKemerovoRussia
  2. 2.Kemerovo State UniversityKemerovoRussia

Personalised recommendations