Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 390–397 | Cite as

On Diffraction Phenomena in Sensors of Surface Waves

  • A. B. Petrin
Physical Optics
  • 6 Downloads

Abstract

The diffraction phenomena associated with the limited aperture size of an incident wave are considered on the basis of a theoretical method for studying the reflection of a plane electromagnetic wave from a plane-layered multifilm structure with homogeneous films. The proposed theory is applied to the analysis of the sensitivity of sensors based on surface waves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators, B 54, 3 (1999).CrossRefGoogle Scholar
  2. 2.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London, U.K.) 424, 824 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Homola, Chem. Rev. 108, 462 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Spoto and M. Minunni, J. Phys. Chem. Lett. 3, 2682 (2012).CrossRefGoogle Scholar
  5. 5.
    H. Raether, Surface Plasmons (Springer, Berlin, 1988).Google Scholar
  6. 6.
    W. L. Barnes, J. Opt. A: Pure Appl. Opt. 8, 87 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    E. Kretschmann and H. Z. Raether, Naturforsch. A 23, 2135 (1968).ADSGoogle Scholar
  8. 8.
    M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators 4, 299 (1983).CrossRefGoogle Scholar
  10. 10.
    B. Liedberg, C. Nylander, and I. Lundstrom, Biosens. Bioelectron. 10, i (1995).Google Scholar
  11. 11.
    R. Garabedian, C. Gonzalez, J. Richards, et al., Sens. Actuators, A 43, 202 (1994).CrossRefGoogle Scholar
  12. 12.
    E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).CrossRefGoogle Scholar
  13. 13.
    D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    K. Matsubara, S. Kawata, and S. Minami, Opt. Lett. 15, 75 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Kessler and E. A. H. Hall, Thin Solid Films 272, 161 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, Sens. Actuators B 65, 32 (2000).CrossRefGoogle Scholar
  19. 19.
    A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, Anal. Chem. 80, 9188 (2008).CrossRefGoogle Scholar
  20. 20.
    A. B. Petrin, O. D. Vol’pyan, and A. S. Sigov, Opt. Spectrosc. 123, 798 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006; Fizmatlit, Moscow, 2009).CrossRefGoogle Scholar
  22. 22.
    A. B. Petrin, O. D. Vol’pyan, and A. S. Sigov, Tech. Phys. 63, 422 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Löfas, M. Malmqvist, E. Rönnberg, et al., Sens. Actuators, B 5, 79 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute of High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations