Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 416–424 | Cite as

Analysis of Characteristics of the Sensing Elements for the Fiber-Based Evanescent Wave Spectroscopy in the Mid-IR

  • S. V. Korsakova
  • E. A. Romanova
  • A. P. Velmuzhov
  • T. V. Kotereva
  • M. V. Sukhanov
  • V. S. Shiryaev
Optical Sensors and Transducers
  • 25 Downloads

Abstract

Characteristics of the sensing element of a fiber sensor for evanescent wave mid-IR spectroscopy have been studied within the electromagnetic theory of fiber waveguides by using the problem of determining the concentration of aqueous acetone solutions as an example. A multimode chalcogenide fiber was used as a sensing element. It has been shown that the selective excitation of the fiber modes may provide the possibility to increase the sensitivity of the fiber sensing element, decrease the minimum detectable concentration of a substance in a solution, and enhance the range of measured solution concentrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Konukhov, E. A. Romanova, and V. S. Shiryaev, Opt. Spectrosc. 115, 288 (2014). doi 10.7868/S0030403413080126Google Scholar
  2. 2.
    J. Heo, Monica M. Rodrigues, S. J. Saggese, and G. H. Sigel, J. Appl. Opt. 30, 3944 (1991). doi 10.1364/AO.30.003944ADSCrossRefGoogle Scholar
  3. 3.
    R. E. Jonas and M. S. Braiman, J. Appl. Spectrosc. 47, 1751 (1993). doi 10.1366/0003702934066118ADSCrossRefGoogle Scholar
  4. 4.
    J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, J. Appl. Opt. 33, 6315 (1994). doi 10.1364/AO.33.006315ADSCrossRefGoogle Scholar
  5. 5.
    J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, J. Am. Ceram. Soc. 78, 2198 (1995). doi 10.1111/j.1151-2916.1995.tb08636.xCrossRefGoogle Scholar
  6. 6.
    M. Katz, A. Katzir, I. Schnitzer, and A. Bornstein, J. Appl. Opt. 33, 5888 (1994). doi 10.1364/AO.33.005888ADSCrossRefGoogle Scholar
  7. 7.
    E. A. Romanova, S. Korsakova, M. Komanec, T. Nemecek, A. Velmuzhov, M. Sukhanov, and V. S. Shiryaev, IEEE J. Sel. Top. Quant. Electron. 23, 1 (2017). doi 10.1109/JSTQE.2016.2630846CrossRefGoogle Scholar
  8. 8.
    S. Korsakova, E. Romanova, A. Velmuzhov, T. Kotereva, M. Sukhanov, and V. Shiryaev, J. Non-Cryst. Solids 475, 3 (2017). doi 10.1016/j.jnoncrysol. 2017.08.027CrossRefGoogle Scholar
  9. 9.
    A. Krug and R. Kellner, J. Mol. Struct. 294, 211 (1993). doi 10.1016/0022-2860(93)80352-VADSCrossRefGoogle Scholar
  10. 10.
    V. Artyushenko, F. Schulte, U. Zabarylo, H.-P. Berlien, I. Usenov, T. Saeb Gilani, H. Eichler, L. Pieszczek, A. Bogomolov, H. Krause, and O. Minet, Proc. SPIE 9537, 953720 (2015). doi 10.1364/ECBO.2015.953720CrossRefGoogle Scholar
  11. 11.
    Y. Raichlin and A. Katzir, J. Appl. Spectrosc. 62, 55A (2008). doi 10.1366/000370208783575456Google Scholar
  12. 12.
    K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adam, K. Staubmann, and T. Baumann, Sens. Actuators B 101, 252 (2004). doi 10.1016/j.snb.2004.03.014CrossRefGoogle Scholar
  13. 13.
    K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, J. Non-Cryst. Solids 326–327, 434 (2003). doi 10.1016/S0022-3093(03)00438-1CrossRefGoogle Scholar
  14. 14.
    B. Bureau, C. Boussard-Plédel, V. Nazabal, J.-L. Adam, and J. Lucas, Adv. Photon. doi 10.1364/SENSORS. 2014.SeTh1C.1Google Scholar
  15. 15.
    D. le Coq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Plédel, and J. Lucas, Int. J. Inorg. Mater. 3, 233 (2001). doi 10.1016/S1466-6049(01)00007-1CrossRefGoogle Scholar
  16. 16.
    E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Plédel, J.-C. Sangleboeuf, and P. Pierre Lucas, J. Opt. Soc. Am. B 27, 966 (2010). doi 10.1364/JOSAB.27.000966ADSCrossRefGoogle Scholar
  17. 17.
    P. Lucas, D. L. Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, J. Appl. Spectrosc. 59, 1 (2005). doi 10.1366/0003702052940387ADSCrossRefGoogle Scholar
  18. 18.
    J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, J. Non-Cryst. Solids 326–327, 430 (2003). doi 10.1016/S0022-3093(03)00434-4Google Scholar
  19. 19.
    P. Houizot, M.-L. Anne, C. Boussard-Plédel, O. Loreal, H. Tariel, J. Lucas, and B. Bureau, Sensors 14, 17905 (2014). doi 10.3390/s141017905CrossRefGoogle Scholar
  20. 20.
  21. 21.
    A. Messica, A. Greenstein, and A. Katzir, J. Appl. Opt. 35, 2274 (1996). doi 10.1364/AO.35.002274ADSCrossRefGoogle Scholar
  22. 22.
    Y. Xu, A. Cottenden, and N. Barrie Jones, J. Opt. Laser Eng. 44, 93 (2006). doi 10.1016/j.optlaseng.2005.05.003CrossRefGoogle Scholar
  23. 23.
    Amorphous Chalcogenides, Advances and Applications, Ed. by R. Wang (Pan Stanford, Singapore, 2013).Google Scholar
  24. 24.
    P. S. Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, J. Opt. A 4, 247 (2002). doi 10.1088/1464-4258/4/3/305ADSCrossRefGoogle Scholar
  25. 25.
    L. S. Thomas, N. A. George, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Lett. 26, 1541 (2001). doi 10.1364/OL.26.001541ADSCrossRefGoogle Scholar
  26. 26.
    W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), p. 190.Google Scholar
  27. 27.
    J. Bertie, John Bertie’s Download Site. https://doi.org/sites.ualberta.ca/~jbertie/JBDownload.HTM.
  28. 28.
    A. P. Velmuzhov, V. S. Shiryaev, M. V. Sukhanov, T. V. Kotereva, M. F. Churbanov, N. S. Zernova, and A. D. Plekhovich, Opt. Mater. 75, 525 (2018). doi 10.1016/j.optmat.2017.11.012ADSCrossRefGoogle Scholar
  29. 29.
  30. 30.
    G. M. Hale and M. R. Querry, J. Appl. Opt. 12, 555 (1973). doi 10.1364/AO.12.000555ADSCrossRefGoogle Scholar
  31. 31.
    J. Rheims, J. Köser, and T. Wriedt, Meas. Sci. Technol. 8, 601 (1997). doi 10.1088/0957-0233/8/6/003ADSCrossRefGoogle Scholar
  32. 32.
    J. A. Savage, P. J. Webber, and A. M. Pitt, Infrared Phys. 20, 313 (1980). doi 10.1016/0020-0891(80)90045-7ADSCrossRefGoogle Scholar
  33. 33.
    C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photon. 8, 830 (2014). doi 10.1038/nphoton.2014.213ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Korsakova
    • 1
  • E. A. Romanova
    • 1
  • A. P. Velmuzhov
    • 2
  • T. V. Kotereva
    • 2
  • M. V. Sukhanov
    • 2
  • V. S. Shiryaev
    • 2
  1. 1.Chernyshevskii Saratov State UniversitySaratovRussia
  2. 2.Devyatykh Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations