Optics and Spectroscopy

, Volume 125, Issue 3, pp 425–432 | Cite as

Identification of Absorption Bands of Monomers and Aggregates in a Layer of Cyanine Dye and Determination of the Orientation of Molecules

  • E. N. Kaliteevskaya
  • V. P. Krutyakova
  • T. K. Razumova
  • A. A. StarovoytovEmail author
Optics of Surfaces and Interfaces


The problem of allocating bands of individual monomers or aggregates of the absorption spectrum of a multicomponent structure arises in the study of molecular layers or organic thin films. Not counting the concentrations of the components, the optical properties of this kind of samples are determined by the tilt of the molecules relative to the substrate surface. Molecular orientation can be determined from the dichroic ratio spectra recorded with the tilt probing of samples. Using the example of the tricarbocyanine dye layers, the following two independent methods for the identification of the spectra of the components from the absorption spectrum of a layer are compared: by comparing the spectra of layers of different thicknesses and based on the dichroic ratio spectra. The effect of laser radiation on the samples, which leads to a change in the dichroic ratio, is studied. Photoinduced changes of the orientation angles of molecules are calculated, which allows one to refine the range of possible values of these angles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Tang and S. A. VanSlyke, J. Appl. Phys. Lett. 51, 913 (1987). doi 10/1063/1.98799ADSCrossRefGoogle Scholar
  2. 2.
    A. C. Fou, O. Onitsuka, M. Ferreira, M. F. Rubner, and B. R. Hsieh, Appl. Phys. 79, 7051 (1996). doi 10/1063/1.362421CrossRefGoogle Scholar
  3. 3.
    S. Tao, Y. Zhou, C. S. Lee, X. Zhang, and S. T. Lee, Chem. Mater. 22, 2138 (2010). doi 10/1021/cm100100wCrossRefGoogle Scholar
  4. 4.
    N. Sun, Y. Zhao, F. Zhao, Y. Chen, D. Yang, J. Chen, and D. Ma, Appl. Phys. Lett. 105, 013303 (2014). doi 10/1063/1.4890217ADSCrossRefGoogle Scholar
  5. 5.
    B. O’Regan and M. Gratzel, Nature (London, U.K.) 353, 737 (1991). doi 10/1038/353737aOADSCrossRefGoogle Scholar
  6. 6.
    Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, Appl. Phys. Lett. 84, 1653 (2004). doi 10/1063/1.1667614ADSCrossRefGoogle Scholar
  7. 7.
    A. Wada, J. Nishida, M. M. Maitani, Y. Wada, and Y. Yamashita, Chem. Lett. 43, 296 (2014). doi 10/1246/cl.130931CrossRefGoogle Scholar
  8. 8.
    X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lutzen, H. G. Rubahn, and J. Kjelstrup-Hansen, Org. Electron. 15, 1273 (2014). doi 10/1016/j.orgel.2014.02.023CrossRefGoogle Scholar
  9. 9.
    J. Mei, Y. Diao, A. L. Appleton, L. Fang, and Z. Bao, J. Am. Chem. Soc. 135, 6724 (2013). doi 10/1021/ja400881nCrossRefGoogle Scholar
  10. 10.
    H. A. Shindy, Dyes Pigm. 145, 505 (2017).CrossRefGoogle Scholar
  11. 11.
    C. A. Guarin, J. P. Villabona-Monsalve, R. Lopez-Arteaga, and J. Peon, J. Phys. Chem. B 117, 7352 (2013). doi10/1021/p400278tCrossRefGoogle Scholar
  12. 12.
    O. Kojima, S. Hamano, T. Kita, and O. Wada, J. Appl. Phys. 110, 083521 (2011). doi10.1063/1.3653228ADSCrossRefGoogle Scholar
  13. 13.
    E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, A. D. Roshal, and A. A. Starovoytov, Opt. Quant. Electron. 49, 32 (2017); E. Kaliteevskaya, V. Krutyakova, T. Razumova, A. Roshal, and A. Starovoytov, Scholar
  14. 14.
    E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and A. A. Starovoitov, Opt. Spectrosc. 120, 482 (2016). doi10.7868/S0030403416030120ADSCrossRefGoogle Scholar
  15. 15.
    E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and A. A. Starovoytov, Opt. Spectrosc. 110, 363 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and A. A. Starovoytov, Opt. Spectrosc. 112, 206 (2012). doi 10.1134/S0030400X12020142ADSCrossRefGoogle Scholar
  17. 17.
    A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Chem. Rev. 100, 1973 (2000). doi 10/1021/cr990402tCrossRefGoogle Scholar
  18. 18.
    A. A. Starovoytov, T. K. Razumova, E. N. Kaliteevskaya, and V. P. Krutyakova, J. Opt. Technol. 81, 289 (2014). doi 10.1364/JOT.81.000289CrossRefGoogle Scholar
  19. 19.
    E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, A. A. Starovoitov, P. V. Shchedrin, and Yu.M. Voronin, J. Opt. Technol. 78, 524 (2011). doi 10.1364/JOT.78.000524CrossRefGoogle Scholar
  20. 20.
    M. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, Pure Appl. Chem. 11, 371 (1965). doi 10.1351/pac19651103037CrossRefGoogle Scholar
  21. 21.
    E. S. Emerson, M. A. Conlin, A. E. Rosenoff, K. S. Norland, H. Rodriguez, D. Chin, and G. R. Bird, J. Phys. Chem. 71, 2396 (1967). doi 10.1021/j100867a003CrossRefGoogle Scholar
  22. 22.
    R. W. Chambers, T. Kajiwara, and D. R. Kearns, J. Phys. Chem. 78, 380 (1974). doi 10.1021/j100597a012CrossRefGoogle Scholar
  23. 23.
    A. A. Starovoytov, E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and N. A. Toropov, Proc. SPIE 8435, 84352G (2012). doi 10.1117/12.926866Google Scholar
  24. 24.
    A. Starovoytov, E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Proc. SPIE 9549, 95490Y (2015). doi 10.1117/12.2192604Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. N. Kaliteevskaya
    • 1
  • V. P. Krutyakova
    • 1
  • T. K. Razumova
    • 1
  • A. A. Starovoytov
    • 1
    Email author
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations