Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 447–453 | Cite as

Rapid Preparation of Large-Area Densely Packed Plasmonic Hot-Spots for Reliable Sers Sensing

  • Jian Chen
  • Zhenping Huang
  • Guiqiang Liu
Plasmonics
  • 20 Downloads

Abstract

A facile, efficient and time-saving strategy is proposed to obtain large-area and reliable surface-enhanced Raman scattering (SERS) substrates via artificial heat-treatment of Au nanoparticles or ultrathin Au films sputtered on the silica substrates. Excellent Raman enhancements with the detection limitation down to 10–9 mol/L are obtained due to the highly-dense plasmonic hot-spots and strong plasmons near-field coupling. Decreased intensity of Raman peaks with the increased sputtering time of Au nanoparticles or ultrathin films mainly originates from the excited and hybridized coupling of multiple surface plasmons. The simple fabrication strategy and superior performance make these substrates promising candidates for the development of inexpensive and reliable SERS substrates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, and H. Wei, ACS Nano 11, 5558 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, Biosens. Bioelectron. 94, 131 (2017).CrossRefGoogle Scholar
  3. 3.
    W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, Adv. Opt. Mater. (2017). doi 10.1002/adom.201770033Google Scholar
  4. 4.
    G. Liu, M. Yu, Z. Liu, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, and G. Gu, Nanotechnology 26, 185702 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    H. Zhu, M. Du, M. Zhang, P. Wang, S. Bao, M. Zou, Y. Fu, and J. Yao, Biosens. Bioelectron. 54, 91 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Liu, M. He, and D. Wang, J. Phys. D: Appl. Phys. 47, 045303 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    Z. Yi, J. Luo, X. Li, Y. Yi, X. Xu, P. Wu, X. Jiang, W. Wu, Y. Yi, and Y. Tang, J. Phys. Chem. C 117, 26295 (2013).CrossRefGoogle Scholar
  8. 8.
    Z. Liu, H. Shao, G. Liu, X. Liu, H. Zhou, Y. Hu, X. Zhang, Z. Cai, and G. Gu, Appl. Phys. Lett. 104, 081116 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, Sens. Actuators, B 215, 480 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, Biosens. Bioelectron. 44, 191 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Luo, K. Sivashanmugan, J. Liao, and C. Yao, and H. Peng, Biosens. Bioelectron. 61, 232 (2014).CrossRefGoogle Scholar
  12. 12.
    K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, Appl. Spectrosc. 52, 1493 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, Appl. Phys. Lett. 90, 153120 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    T. Kondo, K. Nishio, and H. Masuda, Appl. Phys. Express 2, 032001 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, Appl. Phys. Lett. 89, 181918 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    X. Liu, L. Yu, S. Yang, H. Yu, J. Zhao, L. Wang, Y. Wu, and R. Tai, Appl. Phys. Lett. 110, 081605 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler, J. Am. Chem. Soc. 122, 9554 (2000).CrossRefGoogle Scholar
  18. 18.
    V. Parmar, P. K. Kanaujia, R. K. Bommali, and G. V. Prakash, Opt. Mater. 72, 86 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    W. E. Smith, Chem. Soc. Rev. 37, 955 (2008).CrossRefGoogle Scholar
  20. 20.
    N. Sandhyarani and T. Pradeep, Vacuum 49, 279 (1998).CrossRefGoogle Scholar
  21. 21.
    L. Maya, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone, and J. C. Valmalette, Nanotechnology 20, 215705 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    E. Hesse and J. A. Creighton, Langmuir 15, 3545 (1999).CrossRefGoogle Scholar
  24. 24.
    D. W. Boo, W. S. Oh, M. S. Kim, and K. Kim, Chem. Phys. Lett. 120, 301 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    C. J. L. Constrantino and R. F. Aroca, J. Raman Spectrosc. 31, 887 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    R. F. Aroca and C. J. L. Constrantino, Langmuir 16, 5425 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, 2005).zbMATHGoogle Scholar
  28. 28.
    G. Liu, Y. Hu, Z. Liu, Y. Chen, Z. Cai, X. Zhang, and K. Huang, Phys. Chem. Chem. Phys. 16, 4320 (2014).CrossRefGoogle Scholar
  29. 29.
    G. Liu, M. Yu, Z. Liu, P. Pan, X. Liu, S. Huang, and Y. Wang, Plasmonics 11, 677 (2016).CrossRefGoogle Scholar
  30. 30.
    Z. Liu, G. Liu, H. Zhou, X. Liu, K. Huang, Y. Chen, and G. Fu, Nanotechnology 24, 155203 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, Opt. Express 20, 14871 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, Opt. Express 22, 12679 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, ACS Appl. Mater. Interfaces 7, 4962 (2015).CrossRefGoogle Scholar
  34. 34.
    N. Fu, Z. Y. Bao, Y. L. Zhang, G. Zhang, S. Ke, P. Lin, J. Dai, H. Huang, and D. Y. Lei, Nano Energy 41, 654 (2017).CrossRefGoogle Scholar
  35. 35.
    B. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).CrossRefGoogle Scholar
  36. 36.
    K. Aydin, W. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2010).CrossRefGoogle Scholar
  37. 37.
    X. Li, M. Bi, L. Cui, Y. Zhou, X. Du, S. Qiao, and J. Yang, Adv. Funct. Mater. 27, 1605703 (2017).CrossRefGoogle Scholar
  38. 38.
    H. Wei and H. Xu, Nanoscale 5, 10794 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    C. Zhang, Ch. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, Sens. Actuators, B 258, 163 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina

Personalised recommendations