Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 331–336 | Cite as

On Double-Valued Wave Functions in the Description of Intramolecular Coordinate Motions

  • A. V. Burenin
Spectroscopy and Physics of Atoms and Molecules
  • 9 Downloads

Abstract

It is shown that the appearance of double-valued wave functions in constructing the discrete-spectrum classification of coordinate motions in molecules with a linear core and two identical tops using the CNPI-group methods is the consequence of a physically incorrect determination of the action of symmetry operations on variables of a configuration space of the molecule.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Res., Ottawa, 1998).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977) [in Russian].Google Scholar
  3. 3.
    A. V. Burenin, Symmetry of Intramolecular Quantum Dynamics (Walter de Gruyter, Berlin, Boston, 2012; Inst. Prikl. Fiz. RAN, Nizh. Novgorod, 2012).CrossRefzbMATHGoogle Scholar
  4. 4.
    L. M. Sverdlov, M. A. Kovner, E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Nauka, Moscow, 1970; Wiley, New York, 1974).Google Scholar
  5. 5.
    J. T. Hougen, Can. J. Phys. 42, 1920 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    J. Elliott and P. Dawber, Symmetry in Physics (Macmillan, London, 1981), Vol. 2.Google Scholar
  7. 7.
    J. Pliva, A. S. Pine, and S. Civis, J. Mol. Spectrosc. 180, 15 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    C. Lauro, P. R. Bunker, J. W. C. Johns, and A. R. W. McKellar, J. Mol. Spectrosc. 184, 177 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Burenin, Opt. Spectrosc. 121, 643 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Burenin, Opt. Spectrosc. 123, 1 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    P. R. Bunker and C. Lauro, Chem. Phys. 190, 159 (1995).CrossRefGoogle Scholar
  12. 12.
    A. V. Burenin, Opt. Spectrosc. 123, 841 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Burenin, Opt. Spectrosc. 123, 848 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    Internal Rotation in Molecules, Ed. by W. J. Orwill-Thomas (Wiley, London, 1974; Mir, Moscow, 1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations