Advertisement

Optics and Spectroscopy

, Volume 124, Issue 4, pp 494–500 | Cite as

Study of the Optical Properties of CdZnSe/ZnS-Quantum Dot–Au-Nanoparticle Complexes

  • D. A. Volgina
  • E. A. Stepanidenko
  • T. K. Kormilina
  • S. A. Cherevkov
  • A. Dubavik
  • M. A. Baranov
  • A. P. Litvin
  • A. V. Fedorov
  • A. V. Baranov
  • K. Takai
  • P. S. Samokhvalov
  • I. R. Nabiev
  • E. V. Ushakova
Condensed-Matter Spectroscopy
  • 48 Downloads

Abstract

The interaction of gold nanoparticles (NPs) and semiconductor alloyed CdZnSe/ZnS quantum dots (QDs) in colloidal solutions is studied. It is shown that the photoluminescence intensity of QDs in a mixture decreases compared to that in the initial QD solution, which is caused by resonance nonradiative energy transfer from QDs to Au NPs in spontaneously formed aggregates. To control the formation of pairs of interacting QDs and Au NPs, we proposed have a method for creating QD–Au NP complexes bound by special molecules—ligands. It is shown that the morphology and optical properties of the samples obtained depend on the method of their preparation, in particular, on the chemical environment of QDs. It is found that the complexes form in the case of addition of hydrophilic Au NPs to hydrophobic QDs and that this almost does not change the optical properties of the latter compared to those of quasi-isolated QDs in colloidal solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, Science 353 (6302), aac5523 (2016).CrossRefGoogle Scholar
  2. 2.
    D. V. Talapin and E. V. Shevchenko, Chem. Rev. 116, 10343 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Neretina, R. A. Hughes, K. D. Gilroy, and M. Hajfathalian, Acc. Chem. Res. 49, 2243 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Owen and L. Brus, J. Am. Chem. Soc. 139, 10939 (2017).CrossRefGoogle Scholar
  5. 5.
    K. Susumu, L. D. Field, E. Oh, M. Hunt, J. B. Delehanty, V. Palomo, P. E. Dawson, A. L. Huston, and I. L. Medintz, Chem. Mater. 29, 7330 (2017).CrossRefGoogle Scholar
  6. 6.
    Z. Hedayatnasab, F. Abnisa, and W. M. A. W. Daud, Mater. Des. 123, 174 (2017).CrossRefGoogle Scholar
  7. 7.
    U. Aslam and S. Linic, Chem. Mater. 28, 8289 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Kim, B. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, Nat. Mater. 15, 461 (2016).CrossRefADSGoogle Scholar
  9. 9.
    A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 121, 8645 (2017).CrossRefGoogle Scholar
  10. 10.
    E. V. Ushakova, S. A. Cherevkov, A. P. Litvin, P. S. Parfenov, D.-O. A. Volgina, I. A. Kasatkin, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 120, 25061 (2016).CrossRefGoogle Scholar
  11. 11.
    E. V. Ushakova, S. A. Cherevkov, A. P. Litvin, P. S. Parfenov, V. V. Zakharov, A. Dubavik, A. V. Fedorov, and A. V. Baranov, Opt. Express, No. 24, A58 (2016).CrossRefADSGoogle Scholar
  12. 12.
    I. A. Reznik, Y. A. Gromova, A. S. Zlatov, M. A. Baranov, A. O. Orlova, S. A. Moshkalev, V. G. Maslov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 122, 114 (2017).CrossRefADSGoogle Scholar
  13. 13.
    K. J. Huang, D. J. Niu, X. Liu, Z. W. Wu, Y. Fan, Y. F. Chang, and Y. Y. Wu, Electrochim. Acta 56, 2947 (2011).CrossRefGoogle Scholar
  14. 14.
    A. K. Visheratina, F. Purcell-Milton, R. Serrano-Garcia, V. A. Kuznetsova, A. O. Orlova, A. V. Fedorov, A. V. Baranov, and Y. K. Gun’ko, J. Mater. Chem. C 5, 1692 (2017).CrossRefGoogle Scholar
  15. 15.
    L. Lou, K. Yu, Z. Zhang, B. Li, J. Zhu, Y. Wang, R. Huang, and Z. Zhu, Nanoscale 3, 2315 (2011).CrossRefADSGoogle Scholar
  16. 16.
    E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, Nanoscale 9, 12486 (2017).CrossRefGoogle Scholar
  17. 17.
    P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, Nanoscale 8, 9721 (2016).CrossRefADSGoogle Scholar
  18. 18.
    A. Ridolfo, O. di Stefano, N. Fina, R. Saija, and S. Savasta, Phys. Rev. Lett. 105, 263601 (2010).CrossRefADSGoogle Scholar
  19. 19.
    B. Paramanik, S. Kundu, G. De, and A. Patra, J. Mater. Chem. C 4, 486 (2016).CrossRefGoogle Scholar
  20. 20.
    J. D. Cox and M. R. Singh, Adv. Opt. Mater 1, 460 (2013).CrossRefGoogle Scholar
  21. 21.
    C. Strelow, T. S. Theuerholz, C. Schmidtke, M. Richter, J. P. Merkl, H. Kloust, Z. Ye, H. Weller, T. F. Heinz, A. Knorr, and H. Lange, Nano Lett. 16, 4811 (2016).CrossRefADSGoogle Scholar
  22. 22.
    Y. S. Chen, H. Choi, and P. V. Kamat, J. Am. Chem. Soc. 135, 8822 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Liu, M. Cui, H. Zhou, and S. Zhang, Sci. Rep. 6, 30577 (2016).CrossRefADSGoogle Scholar
  24. 24.
    T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, Nano Lett. 7, 3157 (2007).CrossRefADSGoogle Scholar
  25. 25.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5, 763 (2008).CrossRefGoogle Scholar
  26. 26.
    E. Petryayeva, W. R. Algar, and I. L. Medintz, Appl. Spectrosc. 67, 215 (2013).CrossRefADSGoogle Scholar
  27. 27.
    W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, Nano Lett. 10, 2368 (2010).CrossRefADSGoogle Scholar
  28. 28.
    A. Dubavik, V. Lesnyak, N. Gaponik, and A. Eychmüller, Langmuir 27, 10224 (2011).CrossRefGoogle Scholar
  29. 29.
    E. V. Ushakova, T. K. Kormilina, M. A. Burkova, S. A. Cherevkov, V. V. Zakharov, V. K. Turkov, A. V. Fedorov, and A. V. Baranov, Opt. Spectrosc. 122, 25 (2017).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Volgina
    • 1
  • E. A. Stepanidenko
    • 1
  • T. K. Kormilina
    • 1
  • S. A. Cherevkov
    • 1
  • A. Dubavik
    • 1
  • M. A. Baranov
    • 1
  • A. P. Litvin
    • 1
  • A. V. Fedorov
    • 1
  • A. V. Baranov
    • 1
  • K. Takai
    • 2
  • P. S. Samokhvalov
    • 3
  • I. R. Nabiev
    • 3
  • E. V. Ushakova
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Hosei UniversityKoganeiJapan
  3. 3.Laboratory of Nano-BioengineeringNational Research Nuclear University MEPhIMoscowRussia

Personalised recommendations