Calculation of Chemical Shifts of X-Ray-Emission Spectra of Niobium in Niobium(V) Oxides Relative to Metal
- 34 Downloads
Abstract
Chemical shifts of the Kα1 and Kβ1 lines of X-ray-emission spectra of niobium in oxides (Nb2O5)n, n = 1–4, relative to metal Nb have been calculated. Stoichiometric clusters (Nb2O5)n the electronic structure of which was calculated using accurate relativistic pseudopotentials and two-component version of the density functional theory are considered as prototypes for modeling different crystal forms of niobium(V) oxide. The chemical shifts were calculated using the method based on using the property of approximate proportionality of valence spinors in the core region of the heavy atom [11]. Corrections to values of chemical shifts have been determined with allowance for deviations from the abovementioned proportionality. Rapid convergence of results with respect to the size of the niobium oxide cluster has been demonstrated.
Preview
Unable to display preview. Download preview PDF.
References
- 1.B. Joseph, Am. Mineral. 40, 805 (1955).Google Scholar
- 2.I. Nakai, J. Akimoto, M. Imafuku, et al., Phys. Chem. Miner. 15, 113 (1987).ADSCrossRefGoogle Scholar
- 3.O. I. Sumbaev, Sov. Phys. Usp. 21, 141 (1978).ADSCrossRefGoogle Scholar
- 4.Y. V. Lomachuk and A. V. Titov, Phys. Rev. A 88, 062511 (2013).ADSCrossRefGoogle Scholar
- 5.A. V. Titov, Y. V. Lomachuk, and L. V. Skripnikov, Phys. Rev. A 90, 052522 (2014).ADSCrossRefGoogle Scholar
- 6.Y. V. Lomachuk, D. A. Maltsev, Y. A. Demidov, et al., Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.) 20, 170 (2017).Google Scholar
- 7.B. M. Gatehouse and A. D. Wadsley, Acta Crystallogr. 17, 1545 (1964).CrossRefGoogle Scholar
- 8.H. Zhai, J. Döbler, J. Sauer, and L. Wang, J. Am. Chem. Soc. 129, 13270 (2007).CrossRefGoogle Scholar
- 9.S. E. Waller, D. W. Rothgeb, and C. C. Jarrold, J. Chem. Phys. 135, 104317 (2011).ADSCrossRefGoogle Scholar
- 10.C. van Wüllen, Z. Phys. Chem. 224, 413 (2010).CrossRefGoogle Scholar
- 11.A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999).CrossRefGoogle Scholar
- 12.N. S. Mosyagin, A. V. Zaitsevskii, and A. V. Titov, Rev. At. Mol. Phys. 1, 63 (2010).Google Scholar
- 13.N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov, and A. V. Titov, Int. J. Quantum Chem. 116, 301 (2016).CrossRefGoogle Scholar
- 14.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).ADSCrossRefGoogle Scholar
- 15.A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).ADSCrossRefGoogle Scholar
- 16.A. V. Titov, N. S. Mosyagin, A. N. Petrov, et al., Prog. Theor. Chem. Phys. 15, 253 (2006).CrossRefGoogle Scholar
- 17.A. V. Titov, N. S. Mosyagin, A. N. Petrov, and T. A. Isaev, Int. J. Quantum Chem. 104, 223 (2005).ADSCrossRefGoogle Scholar
- 18.L. V. Skripnikov and A. V. Titov, Phys. Rev. A 91, 042504 (2015).ADSCrossRefGoogle Scholar
- 19.L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, et al., Phys. Rev. A 92, 012521 (2015).ADSCrossRefGoogle Scholar
- 20.L. V. Skripnikov, A. D. Kudashov, A. N. Petrov, and A. V. Titov, Phys. Rev. A 90, 064501 (2014).ADSCrossRefGoogle Scholar
- 21.J. Lee, J. Chen, L. V. Skripnikov, et al., Phys. Rev. A 87, 022516 (2013).ADSCrossRefGoogle Scholar
- 22.L. V. Skripnikov, J. Chem. Phys. 145, 214301 (2016).ADSCrossRefGoogle Scholar
- 23.V. F. Bratsev, G. B. Deineka, and I. I. Tupitsyn, Izv. Akad. Nauk SSSR, Fiz. 41 (12), 173 (1977).Google Scholar
- 24.I. Maier, Selected Chapters of Quantum Chemistry: Proofs of Theorems and Formulas (BINOM, Labor. Znanii, Moscow, 2006), p. 197 [in Russian].Google Scholar
- 25.N. S. Mosyagin and A. V. Titov, Generalized Relativistic Effective Core Potentials. http://www.qchem.pnpi.spb.ru/recp.Google Scholar
- 26.WebElements Periodic Table of the Elements. www.webelements.com/niobium/crystal_structure. html.Google Scholar
- 27.E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).CrossRefGoogle Scholar
- 28.W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).ADSGoogle Scholar