Optics and Spectroscopy

, Volume 124, Issue 4, pp 472–477 | Cite as

Calculation of Chemical Shifts of X-Ray-Emission Spectra of Niobium in Niobium(V) Oxides Relative to Metal

  • Yu. V. Lomachuk
  • Yu. A. Demidov
  • L. V. Skripnikov
  • A. V. Zaitsevskii
  • S. G. Semenov
  • N. S. Mosyagin
  • A. V. Titov
Spectroscopy of Atoms and Molecules


Chemical shifts of the Kα1 and Kβ1 lines of X-ray-emission spectra of niobium in oxides (Nb2O5)n, n = 1–4, relative to metal Nb have been calculated. Stoichiometric clusters (Nb2O5)n the electronic structure of which was calculated using accurate relativistic pseudopotentials and two-component version of the density functional theory are considered as prototypes for modeling different crystal forms of niobium(V) oxide. The chemical shifts were calculated using the method based on using the property of approximate proportionality of valence spinors in the core region of the heavy atom [11]. Corrections to values of chemical shifts have been determined with allowance for deviations from the abovementioned proportionality. Rapid convergence of results with respect to the size of the niobium oxide cluster has been demonstrated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Joseph, Am. Mineral. 40, 805 (1955).Google Scholar
  2. 2.
    I. Nakai, J. Akimoto, M. Imafuku, et al., Phys. Chem. Miner. 15, 113 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    O. I. Sumbaev, Sov. Phys. Usp. 21, 141 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    Y. V. Lomachuk and A. V. Titov, Phys. Rev. A 88, 062511 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Titov, Y. V. Lomachuk, and L. V. Skripnikov, Phys. Rev. A 90, 052522 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    Y. V. Lomachuk, D. A. Maltsev, Y. A. Demidov, et al., Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.) 20, 170 (2017).Google Scholar
  7. 7.
    B. M. Gatehouse and A. D. Wadsley, Acta Crystallogr. 17, 1545 (1964).CrossRefGoogle Scholar
  8. 8.
    H. Zhai, J. Döbler, J. Sauer, and L. Wang, J. Am. Chem. Soc. 129, 13270 (2007).CrossRefGoogle Scholar
  9. 9.
    S. E. Waller, D. W. Rothgeb, and C. C. Jarrold, J. Chem. Phys. 135, 104317 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    C. van Wüllen, Z. Phys. Chem. 224, 413 (2010).CrossRefGoogle Scholar
  11. 11.
    A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999).CrossRefGoogle Scholar
  12. 12.
    N. S. Mosyagin, A. V. Zaitsevskii, and A. V. Titov, Rev. At. Mol. Phys. 1, 63 (2010).Google Scholar
  13. 13.
    N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov, and A. V. Titov, Int. J. Quantum Chem. 116, 301 (2016).CrossRefGoogle Scholar
  14. 14.
    C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Titov, N. S. Mosyagin, A. N. Petrov, et al., Prog. Theor. Chem. Phys. 15, 253 (2006).CrossRefGoogle Scholar
  17. 17.
    A. V. Titov, N. S. Mosyagin, A. N. Petrov, and T. A. Isaev, Int. J. Quantum Chem. 104, 223 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    L. V. Skripnikov and A. V. Titov, Phys. Rev. A 91, 042504 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, et al., Phys. Rev. A 92, 012521 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    L. V. Skripnikov, A. D. Kudashov, A. N. Petrov, and A. V. Titov, Phys. Rev. A 90, 064501 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    J. Lee, J. Chen, L. V. Skripnikov, et al., Phys. Rev. A 87, 022516 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    L. V. Skripnikov, J. Chem. Phys. 145, 214301 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    V. F. Bratsev, G. B. Deineka, and I. I. Tupitsyn, Izv. Akad. Nauk SSSR, Fiz. 41 (12), 173 (1977).Google Scholar
  24. 24.
    I. Maier, Selected Chapters of Quantum Chemistry: Proofs of Theorems and Formulas (BINOM, Labor. Znanii, Moscow, 2006), p. 197 [in Russian].Google Scholar
  25. 25.
    N. S. Mosyagin and A. V. Titov, Generalized Relativistic Effective Core Potentials. Scholar
  26. 26.
    WebElements Periodic Table of the Elements. html.Google Scholar
  27. 27.
    E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).CrossRefGoogle Scholar
  28. 28.
    W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Lomachuk
    • 1
  • Yu. A. Demidov
    • 1
  • L. V. Skripnikov
    • 1
    • 2
  • A. V. Zaitsevskii
    • 1
    • 3
  • S. G. Semenov
    • 1
  • N. S. Mosyagin
    • 1
  • A. V. Titov
    • 1
  1. 1.Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute,”Gatchina, Leningrad oblastRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations