Advertisement

Optics and Spectroscopy

, Volume 124, Issue 4, pp 575–584 | Cite as

Determination of the Disperse Composition of a PbO Suspension Containing Aggregates of Particles of Lamellar Shape by the Laser-Polarimetry Method

  • S. N. Chirikov
  • A. V. Shkirin
Physical Optics
  • 11 Downloads

Abstract

The results of measurements of the scattering matrix at a wavelength of 0.63 μm in the range of scattering angles of 10°–155° are presented for an aqueous suspension of lead oxide containing particles of plate form and their aggregates of monomers with dimensions of ~5 nm. The results of the measurements are compared with the results of calculations for axially symmetric scatterers (ellipsoids of rotation, cylinders). It is shown that the presence of aggregates affects the scattering properties of such a medium. The results of reconstructing the distribution of particles of a disperse medium in sizes from the measurements data of the scattering matrix are presented. The reconstruction of the distributions was carried out by solving the problem of optimizing the sum of the squared deviations of the experimental and calculated values of matrix elements in the framework of the model of axially symmetric scatterers. It is shown that the distribution of particles by sizes is more accurately reconstructed by minimizing the sum of the squares of the deviations for the sum of the diagonal elements. The obtained distribution is compared with the distribution measured by the method of dynamic light scattering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic, New York, 2002).Google Scholar
  2. 2.
    L. D. Travis and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).Google Scholar
  3. 3.
    K. V. Gileev, M. A. Yurkin, G. V. Dyatlov, A. V. Chernyshev, and V. P. Maltsev, J. Quant. Spectrosc. Radiat. Transfer 131, 202 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    Xiaoyan Liu, Jiu Shen, J. C. Thomas, Shaojian Shi, Xianming Sun, and Wei Liu, Appl. Opt. 51, 846 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    H. Lindqvist, T. Nousianen, E. Zubko, and O. Munoz, J. Quant. Spectrosc. Radiat. Transfer 112, 1871 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    E. Zubko, Y. Shkuratov, and G. Videen, J. Quant. Spectrosc. Radiat. Transfer 150, 42 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    A. B. Milstein and J. Richardson, J. Quant. Spectrosc. Radiat. Transfer 151, 110 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    T. Nousianen, M. Kahnert, and H. Lindqvist, J. Quant. Spectrosc. Radiat. Transfer 112, 2213 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    Jiangping Liu, Ping Yang, and K. Muinonen, J. Quant. Spectrosc. Radiat. Transfer 161, 136 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    Yuli Wang, A. Chakrabarti, and C. M. Sorensen, J. Quant. Spectrosc. Radiat. Transfer 163, 72 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    E. N. Ezhokin and S. N. Chirikov, Opt. Spectrosc. 109, 613 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. J. Weber, Handbook of Optical Materials (CRC, New York, 2003).Google Scholar
  13. 13.
    D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).CrossRefGoogle Scholar
  14. 14.
    Y. Wu, T. Cheng, L. Zheng, and H. Chen, J. Quant. Spectrosc. Radiat. Transfer 168, 158 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wu, X. Gu, T. Cheng, D. Xie, T. Yu, H. Chen, and J. Guo, J. Quant. Spectrosc. Radiat. Transfer 113, 1454 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    R. Tazaki, H. Tanaka, S. Okuzumi, A. Kataoka, and H. Nomura, Astrophys. J. 823, 70 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    S. I. Tymper and S. N. Chirikov, Opt. Spectrosc. 118, 460 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    D. W. Mackowski, J. Quant. Spectrosc. Radiat. Transfer 100, 237 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    T. L. Farias, U. O. Koylu, and M. G. Carvalho, Appl. Opt. 35, 6560 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    G. Wang and C. M. Sorensen, Appl. Opt. 41, 4645 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    C. M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  23. 23.
    R. Kandilian, Ri-Liang Heng, and L. Pilon, J. Quant. Spectrosc. Radiat. Transfer 151, 310 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    R. Finsy, Adv. Colloid Interface Sci. 52, 79 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.Institute of General PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations