Optics and Spectroscopy

, Volume 124, Issue 2, pp 221–226 | Cite as

Resonance Excitation of Photoluminescence in Crystalline Uranyl Acetate Dihydrate

  • V. S. Gorelik
  • A. A. Loboiko
  • S. O. Nechipurenko
Condensed-Matter Spectroscopy
  • 4 Downloads

Abstract

A method for rapid identification of uranyl compounds based on resonance fiber-optic photoluminescence (PL) excitation by ultraviolet-laser or LED radiation is proposed. This method was used to measure the PL spectra of an extremely small volume (10–9 cm3) of crystalline uranyl acetate dehydrate UO2(CH3COO)2 ∙ 2H2O with an exposure of 10–3 s. Semiconductor LEDs with wavelengths of 369, 385, 410, and 466 nm and a repetitively pulsed nitrogen laser with a lasing wavelength of 337 nm served as sources of excitation radiation. The operating range of a small-sized minispectrometer used in these experiments was 200–1000 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Audi, O. Bersillon, J. Blachot, and A. Wapstra, Nucl. Phys. A 729, 3 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    B. C. Bostick, S. Fendorf, M. O. Barnett, P. M. Jardine, and S. C. Brooks, Soil Sci. Soc. Am. 66, 99 (2002).CrossRefGoogle Scholar
  3. 3.
    C. G. Barraclough, R. W. Cockman, and T. A. O’Donnell, Inorg. Nucl. Chem. Lett. 17, 83 (1981).CrossRefGoogle Scholar
  4. 4.
    K. Komura, M. Yamamoto, and K. Ueno, Nucl. Instrum. Methods Phys. Res., Sect. A 295, 461 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Gaziev, N. G. Gorshkov, L. G. Mashirov, and D. N. Suglobov, Inorg. Chim. Acta 139, 345 (1987).CrossRefGoogle Scholar
  6. 6.
    R. G. Denning, T. P. Snellgrove, and D. R. Woodwark, Theor. Mol. Phys. 37, 1109 (1979).ADSGoogle Scholar
  7. 7.
    G. Meinrath, J. Radioanal. Nucl. Chem. 224, 119 (1997).CrossRefGoogle Scholar
  8. 8.
    G. Liu, J. Phys. Chem. A 115, 12419 (2011).CrossRefGoogle Scholar
  9. 9.
    E. Rabinowitch and R. L. Belford, Spectroscopy and Photochemistry of Uranyl Compounds (Macmillan, New York, 1964).Google Scholar
  10. 10.
    E. L. Nichols and H. L. Howes, Fluorescence of the Uranyl Salts (Carnegie Inst. Press, Washington, 1919).Google Scholar
  11. 11.
    G. H. Dieke and A. B. F. Duncan, Spectroscopic Properties of Uranium Compounds (McGraw-Hill, New York, 1949).Google Scholar
  12. 12.
    A. N. Sevchenko, V. M. Vdovenko, and T. V. Kovaleva, Zh. Eksp. Teor. Fiz. 21, 204 (1951).Google Scholar
  13. 13.
    Z. Wang, J. M. Zachara, W. Yantasee, P. Gassman, Ch. Liu, and A. Joly, Environ. Sci. Technol. 38, 5591 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    C. D. Flint and P. A. Tanner, J. Chem. Soc. 74, 2210 (1978).Google Scholar
  15. 15.
    D. D. Pant and D. P. Khandelwal, J. Sci. Ind. Res., Sect. B 18, 126 (1959).Google Scholar
  16. 16.
    K. Mizuoka, S. Tsushima, M. Hasegawa, T. Hoshi, and Y. Ikeda, Inor. Chem. 44, 6211 (2005).CrossRefGoogle Scholar
  17. 17.
    Z. Wang, J. M. Zachara, P. L. Gassman, Ch. Liu, O. Qafoku, W. Yantasee, and J. G. Catalano, Geochim. Cosmochim. Acta 69, 1391 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. Leung, L. Hayashibara, and J. Spadaro, J. Phys. Chem. Solids 60, 299 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    R. G. Denning, J. Phys. Chem. A 111, 4125 (2007).CrossRefGoogle Scholar
  20. 20.
    R. G. Denning, T. R. Snellgrove, and D. R. Woodwark, Mol. Phys. 30, 1819 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    C. D. Flint and P. Sharma, Mol. Chem. Phys. 79, 317 (1983).ADSGoogle Scholar
  22. 22.
    C. D. Flint and P. A. Tanner, Mol. Chem. Phys. 78, 103 (1982).Google Scholar
  23. 23.
    R. G. Denning and I. D. Morrison, Chem. Phys. Lett. 180, 101 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    Ch. Görller-Walrand and S. de Houwer, Phys. Chem. 6, 3292 (2004).Google Scholar
  25. 25.
    D. R. Lide, Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1998).Google Scholar
  26. 26.
    L. V. Volod’ko and E. A. Turetskaya, J. Appl. Spectrosc. 3, 180 (1965).ADSCrossRefGoogle Scholar
  27. 27.
    H. D. Burrows and T. J. Kemp, Chem. Soc. Rev. 3, 139 (1974).CrossRefGoogle Scholar
  28. 28.
    V. S. Gorelik, V. M. Korshunov, and Yu. P. Voinov, Opt. Spectrosc. 121, 819 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    V. A. Babenko, V. I. Malyshev, A. A. Sychev, and A. N. Shibanov, Sov. J. Quantum Electron. 5, 1044 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    J. Howatson and D. M. Grev, J. Inorg. Nucl. Chem., 1933 (1975).Google Scholar
  31. 31.
    V. S. Gorelik, A. O. Litvinova, and M. F. Umarov, Bull. Lebedev Phys. Inst. 41, 305 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    Xiaoping Sun, D. R. J. Kolling, and H. Mazagri, Inorg. Chim. Acta 435, 117 (2015).CrossRefGoogle Scholar
  33. 33.
    A. Jablonski, Nature 131, 839 (1933).ADSCrossRefGoogle Scholar
  34. 34.
    G. K. Liu, H. Z. Zhuang, and J. V. Beitz, Phys. Solid State 44, 1433 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Gorelik
    • 1
    • 2
  • A. A. Loboiko
    • 1
    • 2
  • S. O. Nechipurenko
    • 1
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations