Optics and Spectroscopy

, Volume 124, Issue 2, pp 187–192 | Cite as

Photoluminescence Properties of Nanoporous Nanocrystalline Carbonate-Substituted Hydroxyapatite

  • D. L. Goloshchapov
  • P. V. Seredin
  • D. A. Minakov
  • E. P. Domashevskaya
Condensed-Matter Spectroscopy
  • 3 Downloads

Abstract

Luminescence characteristics of an analogue of the mineral component of dental enamel—nanocrystalline B-type carbonate-substituted calcium hydroxyapatite (CHAP)—with defects (nanopores ∼2‒5 nm in size) on the surface of nanocrystals are studied. It is shown that laser-induced luminescence of CHAP samples synthesized by us occurs in the region of ∼515 nm (∼2.4 eV) and is related to the existence of CO3 groups substituting PO4 groups in the CHAP lattice. It is determined that the luminescence intensity of the CHAP samples depends on the amount of structurally bound CO3 groups and decreases with decreasing concentration of these intracenter defects in the apatite structure. The results obtained in this work are of potential importance for developing the fundamentals of precision and early detection of caries in human hard dental tissue.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis, and Applications (CRC, Boca Raton, FL, 2014).Google Scholar
  2. 2.
    S. J. Jang, S. E. Kim, T. S. Han, J. S. Son, S. S. Kang, and S. H. Choi, In Vivo 31, 335 (2017).CrossRefGoogle Scholar
  3. 3.
    P. Seredin, D. Goloshchapov, T. Prutskij, and Y. Ippolitov, PLoS One 10 (4), 1 (2015). doi 10.1371/journal. pone.0124008CrossRefGoogle Scholar
  4. 4.
    I. A. Pretty and R. P. Ellwood, J. Dent. 41 (Suppl. 2), S12 (2013). doi 10.1016/j.jdent.2010.04.003CrossRefGoogle Scholar
  5. 5.
    R. M. Rocha-Cabral, F. M. Mendes, E. P. Maldonado, and D. M. Zezell, Proc. SPIE 9531, 95311A–1 (2015). doi 10.1117/12.2180777ADSCrossRefGoogle Scholar
  6. 6.
    T. Leventouri, A. Antonakos, A. Kyriacou, R. Venturelli, E. Liarokapis, and V. Perdikatsis, Int. J. Biomater. 2009, 1 (2009). doi 10.1155/2009/698547CrossRefGoogle Scholar
  7. 7.
    G. Piga, D. Goncalves, T. J. U. Thompson, A. Brunetti, A. Malgosa, and S. Enzo, Int. J. Spectrosc. 2016, 1 (2016). doi 10.1155/2016/4810149CrossRefGoogle Scholar
  8. 8.
    H. Pan and B. W. Darvell, Cryst. Growth Des. 10, 845 (2010). doi 10.1021/cg901199hCrossRefGoogle Scholar
  9. 9.
    P. V. Seredin, D. L. Goloshchapov, T. Prutskij, and Y. A. Ippolitov, Results Phys. 7, 1086 (2017). doi 10.1016/j.rinp.2017.02.025ADSCrossRefGoogle Scholar
  10. 10.
    P. V. Seredin, D. L. Goloshchapov, V. M. Kashkarov, Y. A. Ippolitov, and T. Prutskij, Results Phys. 6, 447 (2016). doi 10.1016/j.rinp.2016.08.003ADSCrossRefGoogle Scholar
  11. 11.
    C. Combes, S. Cazalbou, and C. Rey, Minerals 6 (2), 34 (2016). doi 10.3390/min6020034CrossRefGoogle Scholar
  12. 12.
    E. Ghadimi, H. Eimar, B. Marelli, S. N. Nazhat, M. Asgharian, H. Vali, and F. Tamimi, Springer Plus. 2, 499 (2013). doi 10.1186/2193-1801-2-499CrossRefGoogle Scholar
  13. 13.
    G. A. Waychunas, Rev. Mineral. Geochem. 48, 701 (2002). doi 10.2138/rmg.2002.48.19CrossRefGoogle Scholar
  14. 14.
    L. Bachmann, D. M. Zezell, Ribeiro A. C. da, L. Gomes, and A. S. Ito, Appl. Spectrosc. Rev. 41, 575 (2006). doi 10.1080/05704920600929498ADSCrossRefGoogle Scholar
  15. 15.
    I. Ioniţă, J. Optoelectron. Adv. Mater. 3, 1122 (2009).Google Scholar
  16. 16.
    Q. G. Chen, H. H. Zhu, Y. Xu, B. Lin, and H. Chen, Laser Phys. 25, 085601 (2015). doi 10.1088/1054- 660X/25/8/085601ADSCrossRefGoogle Scholar
  17. 17.
    L. Karlsson, Int. J. Dent. 2010, 1 (2010). doi 10.1155/2010/270729CrossRefGoogle Scholar
  18. 18.
    H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, J. Biophotonics, p. 1 (2012). doi 10.1002/jbio.201200095Google Scholar
  19. 19.
    I. Panayotov, E. Terrer, H. Salehi, H. Tassery, J. Yachouh, F. J. G. Cuisinier, and B. Levallois, Clin. Oral Invest. 17, 757 (2012). doi 10.1007/s00784-012- 0770-9CrossRefGoogle Scholar
  20. 20.
    N. Subhash, S. S. Thomas, R. J. Mallia, and M. Jose, Lasers Surg. Med. 37, 320 (2005). doi 10.1002/lsm.20229CrossRefGoogle Scholar
  21. 21.
    I. Sarycheva, O. Yanushevich, D. Minakov, and V. Shulgin, J. Stomatol. 68, 424 (2015). doi 10.5604/00114553.1177528Google Scholar
  22. 22.
    D. L. Goloshchapov, V. M. Kashkarov, N. A. Rumyantseva, P. V. Seredin, A. S. Lenshin, B. L. Agapov, and E. P. Domashevskaya, Ceram. Int. 39, 4539 (2013). doi 10.1016/j.ceramint.2012.11.050CrossRefGoogle Scholar
  23. 23.
    V. S. Komlev, I. V. Fadeeva, A. N. Gurin, E. S. Kovaleva, V. V. Smirnov, N. A. Gurin, and S. M. Barinov, Inorg. Mater. 45, 329 (2009). doi 10.1134/S0020168509030194CrossRefGoogle Scholar
  24. 24.
    Y. Yusufoglu and M. Akinc, J. Am. Ceram. Soc. 91, 77 (2008). doi 10.1111/j.1551-2916.2007.02092.xCrossRefGoogle Scholar
  25. 25.
    J. Liu, Q. Wu, and Y. Ding, Eur. J. Inorg. Chem. 2005, 4145 (2005). doi 10.1002/ejic.200500207CrossRefGoogle Scholar
  26. 26.
    C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, and J. Lin, Cryst. Growth Des. 9, 2725 (2009). doi 10.1021/cg801353nCrossRefGoogle Scholar
  27. 27.
    E. Feldbach, M. Kirm, H. Kotlov, and H. Mägi, DESY Photon Science Annual Report. http://photon-science.desy.de/annual_report/files/2010/20101246.pdf. Accessed Dec. 28, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. L. Goloshchapov
    • 1
  • P. V. Seredin
    • 1
  • D. A. Minakov
    • 1
  • E. P. Domashevskaya
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations