Optics and Spectroscopy

, Volume 124, Issue 2, pp 230–236 | Cite as

Waveguide Modes in a Planar Graphene–Dielectric Thin-Layer Structure

Physical Optics
  • 12 Downloads

Abstract

Particular features of waveguide propagation of modes in a planar structure that consists of alternating layers of a dielectric and graphene are investigated. Within the effective-medium approximation, dispersion relations are obtained for symmetric and antisymmetric waveguide modes. Based on their numerical analysis, the frequency dependences of the propagation and decay constants, of the group and phase velocities, and of the energy flux carried by waveguide modes are constructed. The influence of the fraction of graphene in the structure on the behavior of waveguide modes is analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Morozov, K. S. Novoselov, and A. K. Geim, Phys. Usp. 51, 744 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    K. Kechedzhi, O. Kashuba, and V. I. Fal’ko, Phys. Rev. B 77, 193403 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    P. Shemella and S. K. Nayak, Appl. Phys. Lett. 94, 032101 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Falkovsky and S. S. Pershoguba, Phys. Rev. B 76, 153410 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    L. A. Falkovsky, J. Phys.: Conf. Ser. 129, 012004 (2008).Google Scholar
  7. 7.
    M. I. Katsnelson, Europhys. Lett. 84, 37001 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    O. L. Berman and R. Ya. Kezerashvili, J. Phys.: Condens. Matter 24, 015305 (2012).ADSGoogle Scholar
  9. 9.
    A. Madani and S. R. Entezar, Phys. B (Amsterdam, Neth.) 431, 1 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Kolesnikov and Yu. E. Lozovik, Tr. MFTI 5 (1), 53 (2013).Google Scholar
  11. 11.
    A. S. El-Naggar, Opt. Quantum Electron. 47, 1627 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Liang, S. Ruan, M. Zhang, H. Su, and Li I. Ling, Appl. Phys. Lett. 107, 091602 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    C. H. Gan, H. S. Chu, and E. P. Li, Phys. Rev. B 85, 125431 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, Opt. Express 21, 17089 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, arXiv:1211.3629 (2012).Google Scholar
  16. 16.
    M. B. Belonenko, N. G. Lebedev, and N. N. Yanyushkina, Phys. Solid State 54, 174 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    P. I. Buslaev, I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Yu. S. Kivshar, JETP Lett. 97, 535 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    F. T. Vasko and V. Ryzhii, Phys. Rev. B 76, 233404 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Natl. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ulyanovsk State UniversityUlyanovskRussia

Personalised recommendations