Molecular Biology

, Volume 52, Issue 6, pp 812–822 | Cite as

Mechanisms and Origin of Bacterial Biolumenescence

  • G. B. ZavilgelskyEmail author
  • R. S. Shakulov


The origin of bioluminescence in living organisms was first mentioned by Charles Darwin (1859) and remains obscure despite significant success achieved over the past decades. Here we discuss the mechanisms of bacterial bioluminescence. We have the main results from structural and functional analysis of the genes of lux operons, enzymes (luciferase), and mechanisms of bioluminescence in several species of marine bacteria, which belong to three genera, Vibrio, Aliivibrio, and Photobacterium (A. fischeri, V. harveyi, P. leiognathi, and P. phosphoreum), and in terrestrial bacteria of the genus Photorhabdus (Ph. luminescens). The structure and mechanisms for the regulation of the expression of the lux operons are discussed. The fundamental characteristics of luciferase and luciferase-catalyzed reactions (stages of FMNH2 and tetradecanal oxidation, dimensional structure, as well as folding and refolding of the macromolecule) are described. We also discuss the main concepts of the origin of bacterial bioluminescence and its role in the ecology of modern marine fauna, including its involvement in the processes of detoxification of the reactive oxygen species and DNA repair, as well as the bait hypothesis.


bioluminescence bacterial luciferase lux operon quorum sensing folding refolding oxygen detoxification 



  1. 1.
    Wilson T., Hastings J.W. 1993. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197‒230.CrossRefGoogle Scholar
  2. 2.
    Dunlop P.V., Urbanczyk H. 2013. Luminous bacteria. In: The Prokaryotes—Prokaryotic Physiology and Biochemistry. Ed. Rosenberg E. Berlin: Springer.Google Scholar
  3. 3.
    Pflüger E. 1875. Über die Phosphorescenz verwesender Organismen. Arch. Ges. Physiol. Men Tiere. 11, 222‒263.CrossRefGoogle Scholar
  4. 4.
    Robertson L.A., Figge M.J., Dunlap P.V. 2011. Beijerinck and the bioluminescent bacteria: Microbiological experiments in the late 19th and early 20th centuries. FEMS Microbiol. Ecol. 75, 185‒194.CrossRefGoogle Scholar
  5. 5.
    Gitel’zon I.N., Rodicheva E.K., Medvedeva S.E., Primakova G.A., Kondrat’eva E.N. 1984. Svetyashchiesya bakterii (Luminescent Bacteria). Novosibirsk: Nauka.Google Scholar
  6. 6.
    Danilov V.S., Egorov N.S. 1990. Bakterial’naya lumi-nestsentsiya (Bacterial Luminescence). Moscow: Mosk. Gos. Univ.Google Scholar
  7. 7.
    Vasil’ev R.F. 1983. Pathways of hemiluminescence excitation in organic compounds. In: Biokhemilyumi-nestsentsiya (Biochemiluminescence). Moscow: Nauka, pp. 31‒55.Google Scholar
  8. 8.
    Sharipov G.L., Kazakov V.P., Tolstikov G.A. 1990. Khimiya i khemilyuminestsentsiya 1,2-dioksetanov (Chemistry and Chemiluminescence of 1,2-Dioxetanes). Moscow: Nauka.Google Scholar
  9. 9.
    Hastings J.W. 1995. Bioluminescence: Similar chemistries but many different evolutionary origins. Photochem. Photobiol. 62, 599‒600.CrossRefGoogle Scholar
  10. 10.
    Mager H.L.X., Tu S.-C. 1995. Chemical aspects of bioluminescence. Photochem. Photobiol. 62, 607‒614.CrossRefGoogle Scholar
  11. 11.
    Engebrecht J., Nealson K., Silverman M. 1983. Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell. 32, 773‒781.CrossRefGoogle Scholar
  12. 12.
    Cohn D.H., Ogden R.C., Abelson J.N., Baldwin T.O., Nealson K.H., Simon M.I., Mileham A.J. 1983. Cloning of the Vibrio harveyi luciferase genes: Use of a synthetic oligonucleotide probe. Proc. Natl. Acad. Sci. U. S. A. 80, 120‒123.CrossRefGoogle Scholar
  13. 13.
    Meighen E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123‒142.Google Scholar
  14. 14.
    Eberhard A., Burlingame A.L., Eberhard C., Kenyon G.L., Nealson K.H., Oppenheimer N.J. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 20, 2444‒2449.CrossRefGoogle Scholar
  15. 15.
    Hanzelka B., Greenberg E.P. 1995. Evidence that the terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177, 815‒817.CrossRefGoogle Scholar
  16. 16.
    Manukhov I.V., Melkina O.E., Goryanin I.I., Baranova A.V., Zavilgelsky G.B. 2010. The N-terminal domain of Aliivibrio fischeri LuxR is a target of the GroEL chaperonin. J. Bacteriol. 192, 5549‒5551.CrossRefGoogle Scholar
  17. 17.
    Fuqua W.C., Winans S.C., Greenberg E.P. 1994. Quorum sensing in bacteria the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269‒275.CrossRefGoogle Scholar
  18. 18.
    Fuqua W.C., Winans S.C., Greenberg E.P. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727‒751.CrossRefGoogle Scholar
  19. 19.
    Nelson E.J., Tunsjo H.S., Fidopiastis P.M., Sorum H., Ruby E.G. 2007. A novel lux-operon in the cryptically luminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl. Environ. Microbiol. 73, 1825‒1833.CrossRefGoogle Scholar
  20. 20.
    Manukhov I.V., Khrulnova S.A., Baranova A., Zavilgelsky G.B. 2011. Comparative analysis of the lux-operons in Aliivibrio logei KCh1 (a Kamchatka isolate) and Aliivibrio salmonicida. J. Bacteriol. 193, 3998‒4001.CrossRefGoogle Scholar
  21. 21.
    Waters C.M., Bassler B.L. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319‒346.CrossRefGoogle Scholar
  22. 22.
    Khmel I.A., Metlitskaya A.Z. 2006. Quorum sensing regulation of gene expression: A promising target for drugs against bacterial pathogenicity. Mol. Biol. (Moscow). 46 (2), 169–182.CrossRefGoogle Scholar
  23. 23.
    Zaitseva Yu.V., Popova A.A., Khmel I.A. 2014. Quorum sensing regulation in bacteria of the family Enterobacteriaceae. Russ. J. Genet. 50 (4), 323‒341.CrossRefGoogle Scholar
  24. 24.
    Chen X., Schauder S., Potler N., Van Dorsselaer A., Pelczer I., Bassler B.L., Hughson F.M. 2002. Structural identification of a bacterial quorum sensing signal containing boron. Nature. 415, 545‒549.CrossRefGoogle Scholar
  25. 25.
    Bassler B., Miller M.B. 2013. Quorum sensing. In: The Prokaryotes–Prokaryotic Communities and Ecophysiology. Eds. Rosenberg E., Delong E.F., Thompson F., Lory S., Stackebrandt E. Berlin: Springer, pp. 495‒509. doi 10.1007/978-3-642-30123-0_60Google Scholar
  26. 26.
    Tu S.-C., Mager H.I.X. 1995. Biochemistry of bacterial bioluminescence. Photochem. Photobiol. 62, 615‒624.CrossRefGoogle Scholar
  27. 27.
    Lei B., Ding Q., Tu S.C. 2004. Identity of the emitter in the bacterial luciferase luminescence reaction: Binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'phosphate as a model. Biochemistry. 43, 15975‒15982.CrossRefGoogle Scholar
  28. 28.
    Lei B., Tu S.-C. 1998. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Biochemistry. 37, 14623‒14629.CrossRefGoogle Scholar
  29. 29.
    Esimbekova E.N., Torgashina I.G., Kratasyuk V.A. 2009. Comparative study of immobilized and soluble NADH:FMN-oxidoreductase–luciferase coupled enzyme system. Biochemistry (Moscow). 74 (6), 853‒859.Google Scholar
  30. 30.
    Fisher A.J., Thomson T.B., Thoden J.B., Baldwin T.O., Rayment I. 1996. The 1.5 Å resolution crystal structure of bacterial luciferase in low salt conditions. J. Biol. Chem. 271, 21956‒21968.CrossRefGoogle Scholar
  31. 31.
    Li C.H., Tu S.C. 2005. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Biochemistry. 44, 12970‒12977.CrossRefGoogle Scholar
  32. 32.
    Li C.H., Tu S.C. 2005. Probing the functionalities of alfaGlu328 and alfaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue. Biochemistry. 44, 13866‒13873.CrossRefGoogle Scholar
  33. 33.
    Tyul’kova N.A., Sandalova T.P. 1996. Comparative analysis of the effect of temperature on bacteria luciferases. Biokhimiya. 61, 275‒287.Google Scholar
  34. 34.
    Vorob’eva T.I., Zavoruev V.V., Mezhevikin V.V., Primakova G.A. 1982. Kinetic properties of luciferases and taxonomy of luminescent bacteria. Mikrobiologiya. 51, 420‒423.Google Scholar
  35. 35.
    Valkova N., Szittner R., Meighen E.A. 1999. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Biochemistry. 38, 13820‒13828.CrossRefGoogle Scholar
  36. 36.
    Zavilgelsky G.B., Kotova V.Yu., Mazhul’ M.M., Manukhov I.V. 2004. The effect of Clp proteins on DnaK-dependent refolding of bacterial luciferases. Mol. Biol. (Moscow). 38 (3), 427‒433.CrossRefGoogle Scholar
  37. 37.
    Inlow J.K., Baldwin T.O. 2002. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase. Biochemistry. 41, 3906‒3915.CrossRefGoogle Scholar
  38. 38.
    Clark C., Sinclair J.F., Baldwin T.O. 1993. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with native enzyme and the unfolded subunits. J. Biol. Chem. 268, 10773‒10779.Google Scholar
  39. 39.
    Baldwin T.O., Ziegler M.M., Chaffotte A.F., Goldberg M.E. 1993. Contribution of folding steps involving the individual subunits of bacterial luciferase to the assembly of the active heterodimeric enzyme. J. Biol. Chem. 268, 10766‒10772.Google Scholar
  40. 40.
    Ziegler M.M., Goldberg M.E., Chaffotte A.F., Baldwin T.O. 1993. Refolding of luciferase subunits from urea and assembly of the active heterodimer. J. Biol. Chem. 268, 10760‒10766.Google Scholar
  41. 41.
    Fedorov A.N., Baldwin T.O. 1995. Contribution of cotranslational folding to the rate of formation native protein structure. Proc. Natl. Acad. Sci. U. S. A. 92, 1227‒1231.CrossRefGoogle Scholar
  42. 42.
    Schroder H., Langer T., Hartl F.-U., Bukau B. 1993. DnaK, DnaJ, GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137‒4144.CrossRefGoogle Scholar
  43. 43.
    Tomoyasu T., Ogura T., Tatsuta T., Bukau B. 1998. Levels of DnaK and DnaJ provide tight control of heat shock genes expression and protein repair in Escherichia coli. Mol. Microbiol. 30, 567–581.CrossRefGoogle Scholar
  44. 44.
    Hesterkamp T., Bukau B. 1998. Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in Escherichia coli. EMBO J. 17, 4818‒4828.CrossRefGoogle Scholar
  45. 45.
    Manukhov I.V., Eroshnikov G.E., Vyssokikh M.Yu., Zavilgelsky G.B. 1999. Folding and refolding of thermolabile and thermostable bacterial luciferases: The role of DnaKJ heat-shock proteins. FEBS Lett. 448, 265‒268.CrossRefGoogle Scholar
  46. 46.
    Zavilgelsky G.B., Kotova V.Yu., Mazhul’ M.M., Manukhov I.V. 2002. Role of Hsp70 (DnaK–DnaJ–GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Biochemistry (Moscow). 67 (9), 986‒992.Google Scholar
  47. 47.
    Raviol H., Sadlish H., Rodriguez F., Mayer M.P., Bukau B. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510‒2518.CrossRefGoogle Scholar
  48. 48.
    Melkina O.E., Goryanin I.I., Manukhov I.V., Bara-nova A.V., Kolb V.A., Svetlov M.S., Zavilgelsky G.B. 2014. Trigger factor assists the refolding of heterodimeric but not monomeric luciferases. Biochemistry (Moscow). 79 (1), 62‒68.Google Scholar
  49. 49.
    Eichhorn E., Davey C.A., Sargent D.F., Leisinger T., Richmond T.J. 2002. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J. Mol. Biol. 324, 457‒468.CrossRefGoogle Scholar
  50. 50.
    Li L., Liu X., Yang W., Xu W., Xu F., Wang W., Feng L., Bartlam M., Wang L., Rao Z. 2008. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN unveiling the long-chain alkane hydroxylase. J. Mol. Biol. 376, 453‒465.CrossRefGoogle Scholar
  51. 51.
    Walsh C. 1985. Naturally occurring 5'-deazaflavin coenzymes: biological redox role. Acc. Chem. Res. 19, 216‒221.CrossRefGoogle Scholar
  52. 52.
    Shima S., Warkentin E., Grabarse W., Sordel M., Wicke M., Thauer R.K., Ermler U. 2000. Structure of coenzyme F(420)-dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J. Mol. Biol. 300, 935‒950.CrossRefGoogle Scholar
  53. 53.
    Aufhammer S.W., Warkentin E., Ermler U., Hagemeier C.H., Thauer R.K., Shima S. 2005. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: Architecture of the F420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci. 14, 1840‒1849.CrossRefGoogle Scholar
  54. 54.
    Aufhammer S.W., Warkentin E., Berk H., Shima S., Thauer R.K., Ermler U. 2004. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure. 12, 361‒370.CrossRefGoogle Scholar
  55. 55.
    Rees J.-F., de Wergifosse B., Noiser O., Dubuisson M., Jansens B., Thompson E.M. 1998. The origin of marine bioluminescence: Timing oxygen defense mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211‒1221.Google Scholar
  56. 56.
    Timmins G.S., Jackson S.K., Swartz H.M. 2001. The evolution of bioluminescent oxygen consumption as an ancient oxygen detoxification mechanism. J. Mol. Evol. 52, 321‒332.CrossRefGoogle Scholar
  57. 57.
    Szpilewska H., Czyz A., Wegrzyn G. 2003. Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress. Curr. Microbiol. 47, 379‒382.CrossRefGoogle Scholar
  58. 58.
    Czyz A., Wrobel B., Wegrzyn G. 2000. Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology. 146, 283‒288.CrossRefGoogle Scholar
  59. 59.
    Wegrzyn G., Czyz A., Olzewska K. 2004. Biological functions and early evolution of bacterial luminescence. Curr. Trends Microbiol. 1, 43‒49.Google Scholar
  60. 60.
    Cutter K.L., Allouh H.M., Salisbury V.C. 2007. Stimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genes. Luminescence. 22, 177‒181.CrossRefGoogle Scholar
  61. 61.
    Hastings J.W., Nealson K.H. 1977. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549‒595.CrossRefGoogle Scholar
  62. 62.
    Nealson K.H., Hastings J.W. 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 43, 496‒518.Google Scholar
  63. 63.
    Zarubin M., Belkin S., Ionescu M., Genin A. 2012. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc. Natl. Acad. Sci. U. S. A. 109, 853‒857.CrossRefGoogle Scholar
  64. 64.
    Visik K.L., Foster J., Doino J., McFall-Ngai M., Ruby R.G. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578‒4586.CrossRefGoogle Scholar
  65. 65.
    Ruby E.G., McFall-Ngai M.J. 1999. Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7, 414‒419.CrossRefGoogle Scholar
  66. 66.
    Lyzen R., Wegrzyn G. 2005. Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species. Arch. Microbiol. 183, 203‒208.CrossRefGoogle Scholar
  67. 67.
    Kozakiewicz J., Gajewska M., Lyzen R., Czyz A., Wegrzyn G. 2005. Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol. Lett. 250, 105‒110.CrossRefGoogle Scholar
  68. 68.
    Walker E.L., Bose J.L., Stabb E.V. 2006. Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl. Environ. Microbiol. 72, 6600‒6606.CrossRefGoogle Scholar
  69. 69.
    Zavilgelsky G.B., Melkina O.E., Kotova V.Yu., Konopleva M.N., Manukhov I.V., Pustovoit K.S. 2015. Photoreactivating activity of bioluminescence: Repair of UV-damaged Escherichia coli DNA proceeds with assistance of the lux genes of marine bacteria. Biophysics (Moscow). 60 (5), 739–744.CrossRefGoogle Scholar
  70. 70.
    Melkina O.E., Kotova V.Yu., Konopleva M.N., Manukhov I.V., Pustovoit K.S., Zavilgelsky G.B. 2015. Photoreactivation of UV-exposed Escherichia coli K12 AB1886 uvrA6 via luminescence of Photobacterium leiognathi luciferase. Mol. Biol. (Moscow). 49 (6), 928‒932.CrossRefGoogle Scholar
  71. 71.
    Bourgois J.J., Sluse F.E., Baguet F., Mallefet J. 2001. Kinetics of light emission and oxygen consumption by bioluminescent bacteria. J. Bioenerg. Biomembr. 33, 353‒363.CrossRefGoogle Scholar
  72. 72.
    Weis V.M., Small A.L., McFall-Ngai M.J. 1996. A peroxidase related to the mammalian antimicrobial protein myeloperoxydase in the Euprymna–Vibrio mutualism. Proc. Natl. Acad. Sci. U. S. A. 93, 13683‒13688.CrossRefGoogle Scholar
  73. 73.
    Hastings J.W. 1983. Biological diversity, chemical mechanisms and the evolutionary origin of bioluminescent systems. J. Mol. Evol. 19, 309‒317.CrossRefGoogle Scholar
  74. 74.
    Hastings J.W. 2012. Bioluminescence. In: Cell Physiology Source Book: Essentials of Membrane Biophysics. Ed. Kaneshiro E. Elsevier, pp. 925–948. doi 10.1016/B978-0-12-387738-3.00052-4Google Scholar
  75. 75.
    Nealson K.H., Hastings J.W. 1992. The luminous bacteria. In: The Prokaryotes. Eds. Balows A., Truper H.G., Dworkin M., Harder W., Schleifer K.-N. Berlin: Springer, pp. 625‒639.Google Scholar
  76. 76.
    Dunlop P. 2014. Biochemistry and genetics of bacterial bioluminescence. Adv. Biochem. Engin. Biotechnol. 144, 37‒64.Google Scholar
  77. 77.
    Pfeiffer T., Schuster S., Banhoeffer D. 2001. Cooperation and competition in the evolution of ATP-producing pathways. Science. 292, 504‒507.CrossRefGoogle Scholar
  78. 78.
    Eberhard A., Hinton J.P., Zuck R.M. 1979. Luminous bacteria synthesize luciferase anaerobically. Arch. Microbiol. 121, 277‒282.CrossRefGoogle Scholar
  79. 79.
    Makemson J.C., Hastings J.W. 1982. Iron represses bioluminescence in Vibrio harveyi. Curr. Microbiol. 7, 181‒186.CrossRefGoogle Scholar
  80. 80.
    Haygood M.G., Nealson K.H. 1985. Mechanisms of iron regulation of luminescence in Vibrio fischeri. J. Bacteriol. 162, 209‒216.Google Scholar
  81. 81.
    Shostov A.A., Liu X., Ser Z., Cluntun A.A., Hung Y.P., Huang L., Kim D., Lee A., Yellen G., Albeck J.G., Locasale J.W. 2014. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. eLife. 3 (1), e03342. doi 07554/eLife.03342Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.State Research Institute of Genetics and Selection of Industrial Microorganisms, National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations