Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phylogenetic Diversity of Microbial Communities from the Surface of Polyethylene Terephthalate Materials Exposed to Different Water Environments

  • 31 Accesses

Abstract

The goal of the present work was to investigate the composition of microbial communities developing on polyethylene terephthalate (PET) samples immersed in aqueous media of various origin (marine, freshwater, and industrial; the latter was periodically treated with an antimicrobial agent) in three different climatic zones. High-throughput sequencing of the V3–V4 region of the 16S rRNA gene was used to obtain gene libraries for each of the samples. Members of the phyla Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria predominated in the libraries from all three groups of the samples. However, the quantitative ratios of both the dominant and the minor groups in the libraries were different, and within the groups the ratios depended on exposure time and antimicrobial treatment. Both the groups of libraries from the samples of different origin and individual communities within the groups exhibited differences at the genus level. The functional characteristics of prokaryotes in the 16S rRNA gene libraries were predicted using iVikodak. Microbial communities of industrial water, in which members of the genera Pseudomonas and Acidovorax were detected in silico were shown to be potentially capable of degrading PET samples; these organisms possess the enzymes for catabolism of terephthalic acid, the intermediate metabolite of this process. Photomicrography confirmed local PET degradation after exposure in industrial water, while no PET degradation was observed in seawater.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Acero, E.H., Ribitsch, D., Dellacher, A., Zitzenbacher, S., Marold, A., Steinkellner, G., Gruber, K., Schwab, H., and Guebitz, G.M., Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis, Biotechnol. Bioeng., 2013, vol. 110, pp. 2581–2590.

  2. 2

    Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

  3. 3

    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, no. 5, pp. 335–336.

  4. 4

    Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., and Streit, W.R., New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes, Appl. Environ. Microbiol., 2018, vol. 84. e02773-17. https://doi.org/10.1128/AEM.02773-17

  5. 5

    Derraik, J.G.B., The pollution of the marine environment by plastic debris: a review, Mar. Pollut. Bull., 2002, vol. 44, pp. 842–852.

  6. 6

    Ghosh, S., Pal, S., and Ray, S., Study of microbes having potentiality for biodegradation of plastics, Environ. Sci. Pollut. Res., 2013, vol. 20, pp. 4339–4355. https://doi.org/10.1007/s11356-013-1706

  7. 7

    Hadad, D., Geresh, S., and Sivan, A., Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis,J. Appl. Microbiol., 2005, vol. 98, pp. 1093–1100.

  8. 8

    Joo, S., Cho, I.J., Seo, H., Son, H.F., Sagong, H.-Y., Shin, T.J., Choi, S.Y., Lee, S.Y., and Kim, K.-J., Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation, Nat. Commun., 2018, vol. 9, p. 382. https://doi.org/10.1038/s41467-018-02881-1

  9. 9

    Kablov, E.N. and Starysev, O.V., Basic and applied research on corrosion and aging of materials under climatic conditions (a review), Aviats. Mater. Tekhnol., 2015, no. 4, pp. 38–52. https://doi.org/10.18577/2071-9140-2015-0-4-38-52

  10. 10

    Kablov, E.N., Strategic directions in development of materials and technologies for their processing during the period to 2030, Aviats. Mater. Tekhnol., 2012, no. 8, pp. 7–17.

  11. 11

    Kanehisa, M. and Goto, S., KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 2000, vol. 28, pp. 27–30.

  12. 12

    Kleeberg, I., Hetz, C., Kroppenstedt, R.M., Müller, R.J., and Deckwer, W.D., Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates, Appl. Environ. Microbiol., 1998, vol. 64, pp. 1731–1735.

  13. 13

    Kleeberg, I., Welzel, K., van den Heuvel, J., Müller, R.J., and Deckwer, W.D., Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters, Biomacromolecules, 2005, vol. 6, pp. 262–270.

  14. 14

    Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

  15. 15

    Laptev, A.B., Nikolaev, E.V., and Kolpachkov, E.D., Thermodynamic characteristics of aging of polymer composite materials under real-life exploitation conditions, Aviats. Mater. Tekhnol., 2018, no. 3(52), pp. 80–88. https://doi.org/10.18577/2071-9140-2018-0-3-80-88

  16. 16

    Law, K.L., Morét-Ferguson, S., Maximenko, N.A., Proskurowski, G., Peacock, E.E., Hafner, J., and Reddy, C.M., Plastic accumulation in the North Atlantic Subtropical Gyre, Science, 2010, vol. 329, pp. 1185–1188.

  17. 17

    Liu, C., Shi, C., Zhu, S., Wei, R., and Yin, C.C., Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis,Biochem. Biophys. Res. Commun., 2019, vol. 508, pp. 289–294. https://doi.org/10.1016/j.bbrc.2018.11.148

  18. 18

    Maniatis, T., Frich, E., and Sambruk G., Methods in Genetic Engineering, Moscow: Molecular Cloning, 1984, pp. 5–479.

  19. 19

    Miyakawa, T., Mizushima, H., Ohtsuka, J., Oda, M., Kawai, F., and Tanokura, M., Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 4297–4307. https://doi.org/10.1007/s00253-014-6272-8

  20. 20

    Moore, C.J., Synthetic polymers in the marine environment: a rapidly increasing, long-term threat, Environ. Res., 2008, vol. 108, pp. 131–139.

  21. 21

    Nagpal, S., Haque, M.M., Singh, R., and Mande, S.S., iVikodak—a platform and standard workflow for inferring, analyzing, comparing, and visualizing the functional potential of microbial communities, Front. Microbiol., 2019, vol. 9, article 3336. https://doi.org/10.3389/fmicb.2018.03336

  22. 22

    Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza pripodnykh vod (Metods for Analysis of Natural Waters), Moscow: Nedra, 1970.

  23. 23

    Ribitsch, D., Heumann, S., Trotscha, E., Herrero Ace-ro, E., Greimel, K., Leber, R., Birner-Gruenberger, R., Deller, S., Eiteljoerg, I., Remler, P., Weber, T., Siegert, P., Maurer, K., Donelli, I., Freddi, G., Schwab, H., and Guebitz, G.M., Hydrolysis of polyethylene terephthalate by para-nitrobenzylesterase from Bacillus subtilis,Biotechnol. Prog., 2011, vol. 27, pp. 951–960. https://doi.org/10.1002/btpr.610

  24. 24

    Ronkvist, A.M., Xie, W., Lu, W., and Gross, R.A., Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate), Macromolecules, 2009, vol. 42, pp. 5128–5138.

  25. 25

    Sasoh, M., Masai, E., Ishibashi, S., Hara, H., Kamimura, N., Miyauchi, K., and Fukuda, M., Characterization of the terephthalate degradation genes of Comamonas sp. strain E6, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1825–1832. https://doi.org/10.1128/AEM.72.3.1825-1832.2006

  26. 26

    Sauvageau, D., Microbial esterase and the degradation of plasticizers, Dissertation, Dept. Chem. Engi. McGill Univ., Montreal, 2004.

  27. 27

    Schlaveli, H.R., Weiss, M.A., Leisinger, T., and Cook, A.M., Terephtalate 1,2-dioxygenase system from Comamonas testosterone T-2: purification and some properties of the oxygenase component, J. Bacteriol., 1994, vol. 176, pp. 6644–6652.

  28. 28

    Sharon, M. and Sharon, C., Studies on biodegradation of polyethylene terephthalate: a synthetic polymer, J. Microbiol. Biotech. Res., 2012, vol. 2, pp. 248–257.

  29. 29

    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., and Nishijima, M., Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing, PLoS One, 2014, vol. 9, article e105592. https://doi.org/10.1371/journal.pone.0105592

  30. 30

    Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., and Oda, K., Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate), Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 2813–2818. https://doi.org/10.1099/ijsem.0.001058

  31. 31

    Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., and Russell, A.E., Lost at sea: where is all the plastic?, Science, 2004, vol. 304, p. 838.

  32. 32

    Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., and Oda, K., A bacterium that degrades and assimilates poly(ethylene terephthalate), Science, 2016, vol. 353, pp. 759–759.

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 18-29-05033).

Author information

Correspondence to T. P. Tourova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by D. Timchenko

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tourova, T.P., Sokolova, D.S., Nazina, T.N. et al. Phylogenetic Diversity of Microbial Communities from the Surface of Polyethylene Terephthalate Materials Exposed to Different Water Environments. Microbiology 89, 96–106 (2020). https://doi.org/10.1134/S0026261720010154

Download citation

Keywords:

  • polyethylene terephthalate
  • PET
  • biostability of materials
  • high-througput sequencing
  • 16S rRNA gene