Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isolation and Characterization of the Strains Producing Bacterial Cellulose

Abstract

Two new strains producing bacterial cellulose were isolated from the Kombucha and Tibicos symbiotic communities. Based on the 16S rRNA gene analysis and the morphological, biochemical, and physiological characteristics, the strains were identified as Komagataeibacter sucrofermentans H 110 and Komagataeibacter hansenii C 110; the strains were deposited to the All-Russian Collection of Industrial Microorganisms under accession nos. VKPM B-11267 and VKPM B-12950, respectively. The isolates have high productivity and form up to 8.2–9.5 g/L bacterial cellulose on media with food industry wastes.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Bae, S. and Shoda, M., Bacterial cellulose production by fed-batch fermentation in molasses medium, Biotechnol. Prog., 2004, vol. 20, pp. 1366–1371.

  2. 2

    Castro, C., Zuluaga, R., Álvarez, C., Putaux, J.-L., Caro, G., Rojas, O.J., Mondragon, I., and Gañán, P., Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus, Carbohydr. Polym., 2012, vol. 89, pp. 1033–1037.

  3. 3

    Cleenwerck, I., De Vos, P., and De Vuyst, L., Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov., Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2277–2283.

  4. 4

    Cleenwerck, I., De Wachter, M., González, A., De Vuyst, L., and De Vos, P., Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii,Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1771–1786.

  5. 5

    Coban, E.P. and Biyik, H., Evaluation of different pH and temperatures for bacterial cellulose production in HS medium and beet molasses medium, Afr. J. Microbial. Res., 2011, vol. 5, pp. 1037–1045.

  6. 6

    De Filippis, F., Troise, A.D., Vitaglione, P., and Ercolini, D., Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation, Food Microbiol., 2018, vol. 73, pp. 11–16.

  7. 7

    Dellaglio, F., Cleenwerck, I., and Felis, G.E., Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 2365–2370.

  8. 8

    Dos Santos, R.A., Berretta, A.A., Barud Hda, S., González-García, L.N., Zucchi, T.D., Goldman, G.H., and Riaño-Pachón, D.M., Draft genome sequence of Komagataeibacter intermedius strain AF2, a producer of cellulose, isolated from Kombucha tea, Genome Announc., 2015, vol. 3, pp. e01404–e01415.

  9. 9

    EAPO Patent no. 201700517, 2017.

  10. 10

    Fels, L., Jakob, F., Vogel, R F., and Wefers, D., Structural characterization of the exopolysaccharides from water kefir, Carbohydr. Polym., 2018, vol. 189, pp. 296–303.

  11. 11

    Florea, M., Reeve, B., Abbott, M., Freemont, P.S., and Ellis, T., Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582, Sci. Rep., 2016, vol. 6, pp. 1–9.

  12. 12

    Heath, L.S., Sloan, G.L., and Heath, H.E., A simple and generally applicable procedure for releasing DNA from bacterial cells, Appl. Environ. Microbiol., 1986, vol. 51, pp. 1138‒1140.

  13. 13

    Hestrin, S. and Schramm, M., Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochem. J., 1954, vol. 58, pp. 345–352.

  14. 14

    Iino, T., Suzuki, R., Tanaka, N., Kosako, Y., Ohkuma, M., Komagata, K., and Uchimura, T., Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar, Int. J. Syst. Evol. Microbiol., 2011, vol. 62, pp. 1465–1469.

  15. 15

    Iyer, P.R., Geib, S.M., Catchmark, J., Kao, T.H., and Tien, M., Genome sequence of a cellulose-producing bacterium, Gluconacetobacter hansenii ATCC 23769, J. Bacteriol., 2010, vol. 192, pp. 4256–4257.

  16. 16

    Jahan, F., Kumar, V., Rawat, G., and Saxena, R.K., Production of microbial cellulose by a bacterium isolated from fruit, Appl. Biochem. Biotechnol., 2012, vol. 167, pp. 1157–1171.

  17. 17

    Kim, S.S., Lee, S.Y., Park, K.J., Park, S.M., An, H.J., Hyun, J.M., and Choi, Y.H., Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice, Saudi J. Biol. Sci., 2017, vol. 24, pp. 314–319.

  18. 18

    Kim, S.Y., Kim, J.N., Wee, Y.J., Park, D.H., and Ryu, H.W., Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar, Appl. Biochem. Biotechnol., 2006, vol. 131, pp. 705–715.

  19. 19

    Kubiak, K., Kurzawa, M., Jędrzejczak-Krzepkowska, M., Ludwicka, K., Krawczyk, M., Migdalski, A., Kacprzak, M.M., Loska, D., Krystynowicz, A., and Bielecki, S., Complete genome sequence of Gluconacetobacter xylinus E25 strain—valuable and effective producer of bacterial nanocellulose, J. Biotechnol., 2014, vol. 176, pp. 18–19.

  20. 20

    Liu, M., Liu, L., Jia, S., Li, S., Zou, Y., and Zhong, C., Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation, Sci. Rep., 2018, vol. 8, p. 6266.

  21. 21

    Liyaskina, E., Revin, V., Paramonova, E., Nazarkina, M., Pestov, N., Revina, N., and Kolesnikova, S., Nanomaterials from bacterial cellulose for antimicrobial wound dressing, J. Phys.: Conf. Ser., 2017, vol. 784, p. 012034.

  22. 22

    Netrusov, A.I., Egorova, M.A., Zakharchuk, L.M., Kolotilova, N.N., Kotova, I.B., Semenova, E.V., Tatarinova, N.Yu., Ugol’kova, N.V., Tsavkelova, E.A., Bobkova, A.F., Bogdanov, A.G., Danilova, I.V., Dinarneva, T.Yu., Zinchenko, V.V., Ismailov, A.D., et al., Praktikum po mikrobiologii (Practical Course in Microbiology), Moscow: Akademiya, 2005.

  23. 23

    Ogino, H., Azuma, Y., Hosoyama, A., Nakazawa, H., Matsutani, M., Hasegawa, A., Otsuyama, K., Matsushita, K., Fujita, N., and Shirai, M., Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar, J. Bacteriol., 2011, vol. 193, pp. 6997–6998.

  24. 24

    Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., and Shchankin, M., Cost-effective production of bacterial cellulose using acidic food industry by-products, Braz. J. Microbiol., 2018, vol. 49, pp. 151–159.

  25. 25

    Revin, V.V., Liyas’kina, E.V., and Pestov, N.A., Poluchenie bakterial’noi tsellyulozy i nanokompozitsionnykh materialov (Production of Bacterial Cellulose and Nanocomposite Materials), Saransk: Mordov. Gos. Univ., 2014.

  26. 26

    RF Patent no. 2464307, 2012.

  27. 27

    RF Patent no. 2568605, 2015.

  28. 28

    Ryngajłło, M., Kubiak, K., Jędrzejczak-Krzepkowska, M., Jacek, P., and Bielecki, S., Comparative genomics of the Komagataeibacter strains‒efficient bionanocellulose producers, Microbiol. Open., 2018, p. e00731.

  29. 29

    Semjonovs, P., Ruklisha, M., Paegle, L., Saka, M., Treimane, R., Skute, M., Rozenberga, L., Vikele, L., Sabovics, M., and Cleenwerck, I., Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha, Appl. Microbiol. Biotechnol., 2017, vol. 101, pp. 1003–1012.

  30. 30

    Volova, T.G., Prudnikova, S.V., Sukovatyi, A.G., and Shishatskaya, E.I., Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 7417–7428.

  31. 31

    Wu, J.M. and Liu, R.H., Cost-effective production of bacterial cellulose in static cultures using distillery wastewater, J. Biosci. Bioeng., 2013, vol. 115, pp. 284–290.

  32. 32

    Yamada, Y. and Yukphan, P., Genera and species in acetic acid bacteria, Int. J. Food Microbiol., 2008, vol. 125, pp. 15–24.

  33. 33

    Yamada, Y., Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltacetito the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov., Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 1670–1672.

  34. 34

    Yamada, Y., Yukphan, P., Vu, H.T.L., Muramatsu, Y., Ochaikul, D., and Nakagawa, Y., Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria, Ann. Microbiol., 2012, vol. 62, pp. 849–859.

  35. 35

    Zhang, H., Xu, X., Chen, X., Yuan, F., Sun, B., Xu, Y., and Sun, D., Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01, Sci. Rep., 2017, vol. 7, p. 4431.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the workers of the State Research Institute of Genetics and Selection of Industrial Microorganisms and E.N. Detkova for molecular genetic research.

Funding

The work was supported by RF Ministry of Science and Higher Education, State Assignment Project no. 11.10882.2018/11.12.

Author information

Correspondence to E. V. Liyas’kina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Revin, V.V., Liyas’kina, E.V., Sapunova, N.B. et al. Isolation and Characterization of the Strains Producing Bacterial Cellulose. Microbiology 89, 86–95 (2020). https://doi.org/10.1134/S0026261720010130

Download citation

Keywords:

  • bacterial cellulose
  • strains
  • producers
  • Komagataeibacter