Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pd–Cu/HOPG and Pd–Ag/HOPG Model Catalysts in CO and Methanol Oxidations at Submillibar Pressures

Abstract

The regularities of formation of alloyed Pd–Cu bimetallic particles deposited on highly oriented pyrolytic graphite (HOPG) were studied by STM and synchrotron-radiation-based XPS. Their chemical composition, structure, and the ranges of thermal stability under ultrahigh vacuum were determined. The Pd–Cu/HOPG model catalysts, as well as the Pd–Ag/HOPG samples whose preparation procedure was tested earlier, exhibited catalytic activity in CO and methanol oxidations at pressures typical of in situ XPS experiments and were stable at the temperatures of the catalytic reaction.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Wang, A., Liu, X.Y., Mou, C.Y., and Zhang, T., J. Catal., 2013, vol. 308, p. 258.

  2. 2

    Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev., 2001, vol. 70, p. 147.

  3. 3

    Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Renzas, J.R., Liu, Z., Chung, J.Y., Mun, B.S., Salmeron, M., and Somorjai, G.A., Science, 2008, vol. 322, p. 932.

  4. 4

    Tao, F., Zhang, S., Nguyen, L., and Zhang, X., Chem. Soc. Rev., 2012, vol. 41, p. 7980.

  5. 5

    Ellert, O.G., Tsodikov, M.V., Nikolaev, S.A., and Novotortsev, V.M., Russ. Chem. Rev., 2014, vol. 83, no.8, p. 718.

  6. 6

    Gao, F. and Goodman, D.W., Chem. Soc. Rev., 2012, vol. 41, p. 8009.

  7. 7

    Pritchard, J.C., He, Q., Ntainjua, E.N., Piccinini, M., Edwards, J.K., Herzing, A.A., Carley, A.F., Moulijn, J.A., Kiely, C.J., and Hutchings, G.J., Green Chem., 2010, vol. 12, p. 915.

  8. 8

    Chen, M.S., Kumar, D., Yi, C.-W., and Goodman, D.W., Science, 2005, vol. 310, p. 291.

  9. 9

    Fiorenza, R., Crisafulli, C., Condorelli, G.G., Lupo, F., and Scire, S., Catal. Lett., 2015, vol. 145, p. 1691.

  10. 10

    Jankowiak, J.T. and Barteau, M.A., J. Catal., 2005, vol. 236, p. 379.

  11. 11

    Zhang, Y., Diao, W., Williams, C.T., and Monnier, J.R., Appl. Catal., A, 2014, vol. 469, p. 419.

  12. 12

    McCue, A.J. and Anderson, J.A., Front. Chem. Sci. Eng., 2015, vol. 9, p. 142.

  13. 13

    Bukhtiyarov, A.V., Nartova, A.V., Kvon, R.I., and Bukhtiyarov, V.I., Russ. Chem. Bull., 2011, no. 10, p. 1977.

  14. 14

    Demidov, D.V., Prosvirin, I.P., Sorokin, A.M., Rosha, T., Knop-Gericke, A., and Bukhtiyarov, V.I., Kinet. Catal., 2011, vol. 52, p. 855.

  15. 15

    Kalinkin, A.V., Smirnov, M.Yu., Bukhtiyarov, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, p. 796.

  16. 16

    Bukhtiyarov, A.V., Nartova, A.V., and Kvon, R.I., Kinet. Catal., 2011, vol. 52, p. 756.

  17. 17

    Bukhtiyarov, A.V., Prosvirin, I.P., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2016, vol. 367, p. 214.

  18. 18

    Bukhtiyarov, A.V., Prosvirin, I.P., Saraev, A.A., Klyushin, A.Yu., Knop-Gericke, A., and Bukhtiyarov, V.I., Faraday Discuss., 2018, vol. 208, p. 255.

  19. 19

    Panafidin, M.A., Bukhtiyarov, A.V., Prosvirin, I.P., Chetyrin, I.A., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, p. 776.

  20. 20

    Mamatkulov, M., Yudanov, I.V., Bukhtiyarov, A.V., Prosvirin, I.P., Bukhtiyarov, V.I., and Neyman, K.M., J. Phys. Chem., 2019, vol. 123, p. 8037.

  21. 21

    http://www.bessy.de/rglab/index.html

  22. 22

    Tanuma, S., Powell, C.J., and Penn, D.R., Surf. Interface Anal., 1993, vol. 21, p. 165.

  23. 23

    Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester: Wiley, 1983.

  24. 24

    Yeh, J.-J. and Lindau, I., Atomic Data and Nuclear Data Tables, 1985, vol. 32, p. 1.

  25. 25

    http://xpspeak.software.informer.com/4.1/

  26. 26

    https://www.helmholtz-berlin.de/projects/emil/index_en.html

Download references

ACKNOWLEDGMENTS

We are grateful to the Russian-German Laboratory (RGBL) and the German-Russian Interdisciplinary Scientific Center (G-RISC) funded by the Federal Ministry of Foreign Affairs of Germany via the German Academic Exchange Service (DAAD).

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 17-03-01378) (reactivity studies of catalysts) and performed under the base budget funding project at Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (АААА-А19-119020890025-3) (preparation and characterization of catalysts by STM and XPS, including SR).

Author information

Correspondence to A. V. Bukhtiyarov.

Additional information

Translated by L. Smolina

Abbreviations: STM—scanning tunneling microscopy; XPS—X-ray photoelectron spectroscopy; SR-XPS—synchrotron-radiaton-based XPS; HOPG—highly oriented pyrolytic graphite; BE— binding energy; m/z—mass/charge signals; PSD – particle size distribution.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panafidin, M.A., Bukhtiyarov, A.V., Klyushin, A.Y. et al. Pd–Cu/HOPG and Pd–Ag/HOPG Model Catalysts in CO and Methanol Oxidations at Submillibar Pressures. Kinet Catal 60, 832–841 (2019). https://doi.org/10.1134/S0023158419060107

Download citation

Keywords:

  • bimetallic catalysts
  • HOPG
  • XPS
  • methanol
  • CO
  • synchrotron radiation
  • STM