Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

PdIn/Al2O3 Intermetallic Catalyst: Structure and Catalytic Characteristics in Selective Hydrogenation of Acetylene

  • 7 Accesses


The structure and catalytic characteristics of a bimetallic catalyst containing Pd1In1 nanoparticles deposited on the surface of γ-Al2O3 were studied. The formation of intermetallic nanoparticles was determined by X-ray diffraction analysis and confirmed by X-ray photoelectron spectroscopy and IR spectroscopy of adsorbed CO. In the hydrogenation of acetylene in excess ethylene, PdIn/Al2O3 had significantly higher selectivity of ethylene formation (~86%) than monometallic Pd/Al2O3 (~35%). The high selectivity of PdIn/Al2O3 is explained by two factors: (1) the formation of monatomic Pd1 sites isolated from one another by In atoms and (2) the change in the electronic state of Pd atoms in the intermetallic nanoparticles.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Furukawa, S. and Komatsu, T., ACS Catal., 2017, vol. 7, p. 735.

  2. 2

    Marakatti, V. S. and Peter, S. C., Prog. Solid State Chem., 2018, vol. 52, p. 1.

  3. 3

    Armbrüster, M., Schlögl, R., and Grin, Yu., Sci. Technol. Adv. Mater., 2014, vol. 15, p. 034 803.

  4. 4

    Dasgupta, A. and Rioux, R.M., Catal. Today, 2019, vol. 330, p. 2.

  5. 5

    Arkatova, L.A., Khim. Interesah Ustoich. Razvit., 2001, vol. 19, p. 7.

  6. 6

    Armbrüster, M., Behrens, M., Cinquini, F., Föttinger, K., Grin, Yu., Haghofer, A., Klötzer, B., Knop-Gericke, A., Lorenz, H., Ota, A., Penner, S., Prinz, J., Rameshan, C., Révay, Z., and Rosenthal, D., et al., ChemCatChem., 2012, vol. 4, p. 1048.

  7. 7

    Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Yu., and Schlögl, R., J. Am. Chem. Soc., 2010, vol. 132, p. 14745.

  8. 8

    Kovnir, K., Armbrüster, M., Teschner, D., Venkov, T.V., Jentoft, F.C., Knop-Gericke, A., Grin, Yu., and Schlögl, R., Sci. Tech. Adv. Mater., 2007, vol. 8, p. 420.

  9. 9

    Osswald, J., Giedigkeit, R., Jentoft, R.E., Armbrüster, M., Girgsdies, F., Kovnir, K., Ressler, T., Grin, Yu., and Schlögl, R., J. Catal., 2008, vol. 258, p. 210.

  10. 10

    Osswald, J., Kovnir, K., Armbrüster, M., Giedigkeit, R., Jentoft, R.E., Wild, U., Grin, Yu., and Schlögl, R., J. Catal. 2008, vol. 258, p. 219.

  11. 11

    Wowsnick, G., Teschner, D., Kasatkin, I., Girgsdies, F., Armbrüster, M., Zhang, A., Grin, Yu., Schlögl, R., and Behrens, M., J. Catal., 2014, vol. 309, p. 209.

  12. 12

    Wowsnick, G., Teschner, D., Armbrüster, M., Kasatkin, I., Girgsdies, F., Grin, Yu., Schlögl, R., and Behrens, M., J. Catal., 2014, vol. 309, p. 221.

  13. 13

    Kovnir, K., Osswald, J., Armbruster, M., Giedigkeit, R., Ressler, T., Grin, Yu., and Schlögl, R., Stud. Surf. Sci. Catal., 2006, vol. 162, p. 481.

  14. 14

    Glyzdova, D.V., Smirnova, N.S., Leont’eva, N.N., Gerasimov, E.Yu., Prosvirin, I.P., Vershinin, V.I., Shlyapin, D.A., and Tsyrul’nikov, P.G., Kinet. Catal. 2017, vol. 58, p. 140.

  15. 15

    Afonasenko, T.N., Smirnova, N.S., Temerev, V.L., Leont’eva, N.N., Gulyaeva, T.I., and Tsyrul’nikov, P.G., Kinet. Catal. 2016, vol. 57, p. 490.

  16. 16

    Smirnova, N.S., Shlyapin, D.A., Mironenko, O.O., Anoshkina, E.A., Temerev, V.L., Shitova, N.B., Kochubey, D.I., and Tsyrul’nikov, P.G., J. Mol. Catal. A: Chem., 2012, vol. 358, p. 152.

  17. 17

    Smirnova, N.S., Shlyapin, D.A., Shitova, N.B., Kochubey, D.I., and Tsyrul’nikov, P.G., J. Mol. Catal. A: Chem., 2015, vol. 403, p. 10.

  18. 18

    Smirnova, N.S., Mironenko, O.O., Shlyapin, D.A., Tsyrul’nikov, P.G., and Kochubei, D.I., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, p. 1151

  19. 19

    Smirnova, N.S., Shlyapin, D.A., Leont’eva, N.N., Trenikhin, M.V., Shitova, N.B., Tsyrul’nikov, P.G., and Kochubei, D.I., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, p. 1186.

  20. 20

    Furukawa, S., Takahashi, K., and Komatsu, T., Chem. Sci., 2016, vol. 7, p. 4476.

  21. 21

    Krajčí, M. and Hafner, J., ChemCatChem., 2016, vol. 8, p. 34.

  22. 22

    Furukawa, S., Endo, M., and Komatsu, T., ACS Catal. 2014, vol. 4, p. 3533.

  23. 23

    Okamoto, H., ASM Int., 2000, vol. 828, p. 2000.

  24. 24

    Wu, Z., Wegener, E.C., Tseng, H.-T., Gallagher, J.R., Harris, J.W., Diaz, R.A., Ren, Ya., Ribeiro, F.H., and Miller, J.T., Catal. Sci. Technol., 2016, vol. 6, p. 6965.

  25. 25

    Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Baeva, G.N., Rassolov, A.V., Yakushev, I.A., Vargaftik, M.N., and Stakheev, A.Yu., Nanomaterials, 2018, vol. 8, p. 769.

  26. 26

    Burueva, D.B., Kovtunov, K.V., Bukhtiyarov, A.V., Barskiy, D.A., Prosvirin, I.P., Mashkovsky, I.S., Baeva, G.N., Bukhtiyarov, V.I., Stakheev, A.Yu., and Koptyug, I.V., Chem. Eur. J., 2018, vol. 24, p. 2547.

  27. 27

    Stakheev, A.Yu., Smirnova, N.S., Krivoruchenko, D.S., Baeva, G.N., Mashkovsky, I.S., Yakushev, I.A., and Vargaftik, M.N., Mendeleev Commun. 2017, vol. 27, p. 515.

  28. 28

    Bard, A.J., Parsons, R., and Jordan, J., Standard Potentials in Aqueous Solution, Boca Raton: CRC Press, 1985, p. 848.

  29. 29

    Mashkovsky, I.S., Smirnova, N.S., Markov, P.V., Baeva, G.N., Bragina, G.O., Bukhtiyarov, A.V., Prosvirin, I.P., and Stakheev, A.Yu., Mendeleev Commun. 2018, vol. 28, p. 603.

  30. 30

    Stakheev, A.Yu., Highly organized nanostructured heterogeneous catalysts based on bimetallic and intermetallic nanoparticles for reactions of fine organic synthesis, Report on the RSF project 16-13-10530 in2018. http://rscf.ru/prjcard/?rid=16-13-10530

  31. 31

    Langford, J.I. and Wilson, A.J.C., J. Appl. Crystallogr., 1978, vol. 11, p. 102.

  32. 32

    Moulder, J., Stickle, W., Sobol, P., and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy, Eden Priarie: Perkin-Elmer, 1992.

  33. 33

    Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, p. 129.

  34. 34

    Lear, T., Marshall, R., Lopez-Sanchez, J.A., Jackson, S.D., Klapotke, T.M., Baumer, M., Rupprechter, G., Freund, H.-J., and Lennon, D., J. Chem. Phys., 2005, vol. 123, p. 174706.

  35. 35

    Hadjiivanov, K.I. and Vayssilov, G.N., Adv. Catal., 2002, vol. 47, p. 307.

  36. 36

    Cao, Y., Sui, Z., Zhu, Y., Zhou, X., and Chen, D., ACS Catal., 2017, vol.7, p. 7835.

  37. 37

    Wencka, M., Hahne, M., Kocjan, A., Vrtnik, S., Kozelj, P., Korze, D., Jaglicic, Z., Soric, M., Popcevic, P., Ivkov, J., Smontara, A., Gille, P., Jurga, S., Tomes, P., and Paschen, S., et al., Intermetallics, 2014, vol.55, p. 56.

  38. 38

    Rameshan, C., Lorenz, H., Mayr, L., Penner, S., Zemlyanov, D., Arrigo, R., Haevecker, M., Blume, R., Knop-Gericke, A., Schlögl, R., and Klötzer, B., J. Catal., 2012, vol. 295, p. 186.

  39. 39

    Neumann, M., Teschner, D., Knop-Gericke, A., Reschetilowski, W., and Armbrüster, M., J. Catal., 2016, vol. 340, p. 49.

  40. 40

    Rameshan, C., Stadlmayr, W., Penner, S., Lorenz, H., Mayr, L., Hävecker, M., Blume, R., Rocha, T., Teschner, D., Knop-Gericke, A., Schlögl, R., Zemlyanov, D., Memmel, N., and Klötzer, B., J. Catal., 2012, vol. 290, p. 126.

  41. 41

    Hillebrecht, F.U., Fuggle, J.C., Bennett, P.A., and Zołnierek, Z., Phys. Rev. B, 1983, vol. 27, p. 2179.

  42. 42

    Practical surface analysis by Auger and X-ray photoelectron spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester: Wiley, 1983.

  43. 43

    McGuirk, G.M., Ledieu, J., Gaudry, É., de Weerd, M.-C., and Fournée, V., J. Chem. Phys., 2014, vol. 141, p. 084702.

  44. 44

    Armbrüster, M., Wowsnick, G., Friedrich, M., Heggen, M., and Cardoso-Gil, R., J. Am. Chem. Soc., 2011, vol. 133, p. 9112.

  45. 45

    Shao, L.D., Zhang, W., Armbrüster, M., Teschner, D., Girgsdies, F., Zhang, B.S., Timpe, O., Friedrich, M., Schlögl, R., and Su, D.S., Angew. Chem., 2011, vol. 50, p. 10231.

  46. 46

    Pei, G.X., Liu, X.Y., Wang, A., Lee, A.F., Isaacs, M.A., Li, L., Pan, X., Yang, X., Wang, X., Tai, Z., Wilson, K., and Zhang, T., ACS Catal., 2015, vol. 5, p. 3717.

  47. 47

    Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., and Nørskov, J.K., Science, 2008, vol. 320, p. 1320.

  48. 48

    Meyer, R.J., Zhang, Q., Kryczka, A, Gomez, C., and Todorovic, R., ACS Catal., 2018, vol. 8, p. 566.

  49. 49

    Osswald, J., Active-site isolation for the selective hydrogenation of acetylene: the Pd-Ga and Pd–Sn intermetallic compounds, PhD Thesis, Berlin: Technical Univeristy Berlin, 2006, p. 163.

  50. 50

    Feng, Q., Zhao, S., Wang, Y., Dong, J., Chen, W., He, D., Wang, D., Yang, J., Zhu, Y., Zhu, H., Gu, L., Li, Z., Liu, Y., Yu, Rong., Li, J., and Li, Y., J. Am. Chem. Soc., 2017, vol. 139, p. 7294.

  51. 51

    Mashkovskii, I.S., Tkachenko, O.P., Baeva, G.N., and Stakheev, A.Yu., Kinet. Catal. 2009, vol. 50, p. 768.

  52. 52

    Lamberov, A.A., Egorova, S.R., Il’yasov, I.R., Gil’manov, Kh.Kh., Trifonov, S.V., Shatilov, V.M., and Ziyatdinov, A.Sh., Kinet. Catal. 2007, vol. 48, p. 136.

Download references


We are grateful to M.N. Vargaftik and I.A. Yakushev for providing us with the sample of the bimetallic complex used for catalyst preparation.


The XRD, XPS, and IR spectroscopy studies of the structure and morphology of the catalysts and their catalytic characteristics in gas-phase hydrogenation of acetylene were financially supported by the Russian Scientific Foundation (grant no. 19-13-00285). The procedure for the synthesis of the bimetallic PdIn/Al2O3 catalyst was developed with financial support of the Russian Scientific Foundation (grant no. 16-13-10530).

Author information

Correspondence to A. Yu. Stakheev.

Additional information

Translated by L. Smolina

Abbreviations: Pd1 sites—palladium atoms isolated from one another by the atoms of the second metal (In); XRD—X-ray diffraction analysis; Ssp—specific surface area; IR-СО—IR spectroscopy of adsorbed СО; a. b.—absorption band; XPS—X-ray photoelectron spectroscopy; \({{X}_{{{{{\text{C}}}_{2}}{{{\text{H}}}_{2}}}}}\)—conversion of acetylene; \({{S}_{{{{{\text{C}}}_{2}}{{{\text{H}}}_{4}}}}}\)—selectivity of ethylene formation; T100%—temperature at which 100% conversion of C2H2 is achieved; S90%—selectivity of ethylene formation at 90% conversion of C2H2; BE—binding energy; Еа—activation energy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markov, P.V., Bukhtiyarov, A.V., Mashkovsky, I.S. et al. PdIn/Al2O3 Intermetallic Catalyst: Structure and Catalytic Characteristics in Selective Hydrogenation of Acetylene. Kinet Catal 60, 842–850 (2019). https://doi.org/10.1134/S0023158419060065

Download citation


  • gas-phase hydrogenation of acetylene
  • bimetallic catalysts
  • nanoparticles
  • catalyst structure
  • palladium
  • indium
  • isolated Pd sites
  • intermetallics