Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of the State of a Surface Layer on the Properties of Pd–P Catalysts in the Hydrogenation of Alkylanthraquinones

  • 4 Accesses

Abstract

X-ray photoelectron spectroscopy (XPS) was used to study the state of the surface layer of a Pd–P catalyst, which exhibits high selectivity in the hydrogenation of 2-ethyl-9,10-anthraquinone. The preparation of the catalyst from Pd(acac)2 and white phosphorus in hydrogen in a toluene–1-octanol solution led to the formation of Pd–P nanoparticles whose surface was enriched in electron-deficient palladium, apparently, as a constituent of an amorphized 2D layer based on a solid solution of Pd and P. Octyl esters of phosphoric acids, adsorbed on the surface, acted as stabilizers. A relationship between the properties of the Pd–P catalyst in the hydrogenation of 2-ethyl-9,10-anthraquinone and the state of the surface layer was considered.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Ciriminna, R., Albanese, L., Meneguzzo, F., and Pagliaro, M., ChemSusChem., 2016, vol. 9, p. 1.

  2. 2

    Campos-Martin, J.M., Blanco-Brieva, G., and Fierro, J.L., Angew. Chem., 2006, vol. 45, no. 42, p. 6962.

  3. 3

    Yuan, E., Wu, C., Hou, X., Dou, M., Liu, G., Li, G., and Wang, L., J. Catal., 2017, vol. 347, p. 79.

  4. 4

    Yuan, E., Wu, C., Liu, G., Li, G., and Wang, L., J. Ind. Eng. Chem., 2018, vol. 66, p. 158.

  5. 5

    Kosydar, R., Drelinkiewicz, A., Lalik, E., and Gurgul, J., Appl. Catal., A, 2011, vol. 402, no. 1–2, p. 121.

  6. 6

    Sterenchuk, T.P., Belykh, L.B., Skripov, N.I., Sanzhieva, S.B., Gvozdovskaya, K.L., and Shmidt, F.K., Kinet. Catal., 2018, vol. 59, no. 5, p. 585.

  7. 7

    Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, Wiley, 1972.

  8. 8

    US Patent 3 474 464, 1969.

  9. 9

    Miquel, P., Yamin, Y., Lombaert, K., Dujardin, C., Trentesaux, M., Gengembre, L., and Granger, P., Surf. Interface Anal., 2010, vol. 42, nos. 6–7, p. 545.

  10. 10

    Mazalov, L.N., Trubina, S.V., Kryuchkova, N.A., Tarasenko, O.A., Trubin, S.V., and Zharkova, G.I., J. Struct. Chem., 2007, vol. 48, no. 2, p. 253.

  11. 11

    Selishchev, D.S., Kolobov, N.S., Bukhtiyarov, A.V., Gerasimov, E.Y., Gubanov, A.I., Kozlov, D.V., Appl. Catal., B, 2018, vol. 235, p. 214.

  12. 12

    Gabasch, H., Unterberger, W., Hayek, K., Klotzer, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Havecker, M., Knop-Gericke, A., Schlog, R., Han, J., Ribeiro, F.H., Aszalos-Kiss, B., Curtin, T., and Zemlyanov, D., Surf. Sci., 2006, vol. 600, p. 2980.

  13. 13

    Wu, T., Kaden, W.E., Kunkel, W.A., and Anderson, S.L., Surf. Sci., 2009, vol. 603, no. 17, p. 2764.

  14. 14

    Successful Design of Catalysts: Future Requirements and Development, Inui, T., Ed., Amsterdam: Elsevier, 1988, p. 3.

  15. 15

    Zhao, M., Chem. – Asian J., 2016, vol. 11, p. 461.

  16. 16

    Bedia, J., Rosas, J.M., Rodrıguez-Mirasol, J., and Cordero, T., Appl. Catal., B, 2010, vol. 94, nos. 1–2, p. 8.

  17. 17

    Blanchard, P.E.R., Grosvenor, A.P., Cavell, R.G., and Mar, A., Chem. Mater., 2008, vol. 20, no. 22, p. 7081.

  18. 18

    Rego, R., Ferraria, A.M., Botelho do Rego, A.M., and Oliveira, M.C., Electrochim. Acta, 2013, vol. 87, p. 73.

  19. 19

    Grosvenor, A.P., Cavell, R.G., and Mar, A., J. Solid State Chem., 2008, vol. 181, no. 10, p. 2549.

  20. 20

    Skripov, N.I., Belykh, L.B., Belonogova, L.N., Rokhin, A.V., Stepanova, T.P., and Shmidt, F.K., Russ. J. Gen. Chem., 2012, vol. 82, no. 2, p. 206.

  21. 21

    Moreau, L.M., Ha, D.H., Bealing, C.R., Zhang, H., Hennig, R.G., and Robinson, R.D., Nano Lett., 2012, vol. 12, no. 9, p. 4530.

  22. 22

    Sun, H., Xu, J., Fu, G., Mao, X., Zhang, L., Chen, Y., Zhou, Y., Lu, T., and Tang, Y., Electrochim. Acta, 2012, vol. 59, p. 279.

  23. 23

    Puziy, A.M., Poddubnaya, O.I., and Ziatdinov, A.M., Appl. Surf. Sci., 2006, vol. 252, no. 23, p. 8036.

  24. 24

    Skripov, N.I., Belykh, L.B., Belonogova, L.N., Umanets, V.A., Ryzhkovich, E.N., and Shmidt, F.K., Kinet. Catal., 2010, vol. 51, no. 5, p. 714.

  25. 25

    Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Kolesnikov, S.S., and Schmidt, F.K., J. Nanosci. Nanotechnol., 2017, vol. 17, no. 1, p. 696.

  26. 26

    Kosydar, R., Drelinkiewicz, A., Lalik, E., and Gurgul, J., Appl. Catal., A, 2011, vol. 402, nos. 1–2, p. 121.

  27. 27

    Maki-Arvela, P., Hajek, J., Salmi, T., and Murzin, D.Yu., Appl. Catal., A, 2005, vol. 292, p. 1.

  28. 28

    Maccarrone, M.J., Lederhos, C.R., Torres, G., Betti, C., Coloma-Pascual, F., Quiroga, M.E., and Yori, J.C., Appl. Catal., A, 2012, vols. 441–442, p. 90.

  29. 29

    Mironenko, R.M., Belskaya, O.B., Lavrenov, A.V., and Likholobov, V.A., Kinet. Catal., 2018, vol. 59, no. 3, p. 339.

  30. 30

    Stojewski, M., Kowalska, J., and Jurczakowski, R., J. Phys. Chem. C, 2009, vol. 113, no. 9, p. 3707.

  31. 31

    Flanagan, B.T.B., Biehl, G.E., Clewley, J.D., Kundqvist, S., and Anderson, Y., J. Chem. Soc., Faraday Trans. 1, 1980, vol. 76, p. 196.

  32. 32

    Liu, B., Qiao, M., Wang, J., and Fan, K., Chem. Commun., 2002, p. 1236.

Download references

ACKNOWLEDGMENTS

The X-ray photoelectron spectra were measured on a PHOIBOS 150 MCD 9 photoelectron spectrometer at the Center for Collective Use of the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

The electron microscopy images of the catalyst samples were obtained on an electron microscope at the Baikal Center for Nanotechnology, Irkutsk National Research Technical University (INRTU).

Funding

The study was supported by the Russian Science Foundation (project no. 17-73-10158).

Author information

Correspondence to L. B. Belykh.

Additional information

Translated by Valentin Makhlyarchuk

Abbreviations: CSR, coherent scattering region; HR TEM, high-resolution transmission electron microscopy; XRD, X-ray diffraction; FWHM, full width at half maximum of spectral lines; EDX, energy-dispersive X-ray spectroscopy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belykh, L.B., Sterenchuk, T.P., Skripov, N.I. et al. Effect of the State of a Surface Layer on the Properties of Pd–P Catalysts in the Hydrogenation of Alkylanthraquinones. Kinet Catal 60, 808–817 (2019). https://doi.org/10.1134/S0023158419060028

Download citation

Keywords:

  • hydrogenation
  • 2-ethyl-9,10-anthraquinone
  • palladium–phosphorus catalysts
  • selectivity
  • XPS