Advertisement

Kinetics and Catalysis

, Volume 59, Issue 4, pp 472–480 | Cite as

The Dehydrogenation of Propane on Platinum–Tin Glass-Fiber Woven Catalysts

  • L. P. Didenko
  • T. V. Dorofeeva
  • L. A. Sementsova
  • P. E. Chizhov
  • E. I. Knerel’man
  • G. I. Davydova
Article
  • 14 Downloads

Abstract

The reaction of propane dehydrogenation on platinum–tin catalysts supported onto different woven carriers (an aluminoborosilicate and two silica materials) was studied. It was found that the catalyst was rapidly deactivated by carbon deposits formed, and the rate of this reaction increased with the specific surface area of the glass-fiber woven material and the Pt content. It was established that the Pt: Sn ratio in surface platinum particles was about 6, and it increased to 39 after the reaction; this fact is indicative of a Sn loss, which led to an increase in the conversion of feed into carbon deposits that deactivated the catalyst. A mixture of propane and 5–10 vol % H2 should be used for the stabilization of the catalytic system; in this case, the negative effect of hydrogen on the yield of propylene was minimal. On the catalyst supported onto a silica carrier under optimum conditions (550°C; propane space velocity, 480 h–1), which correspond to minimum selectivity for the formation of carbon deposits, the yield of propylene was ~18%. The test glass-fiber woven catalyst was inferior to granulated platinum–tin catalysts in terms of catalytic activity; therefore, its use in the reaction of propane dehydrogenation is inexpedient.

Keywords

dehydrogenation propane glass-fiber woven support platinum–tin catalyst carbon deposits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gil’manov, Kh.Kh., Nesterov, O.N., Bekmukhamedov, G.E., Kataev, A.N., and Egorova, S.R., Katal. Prom-sti, 2010, no. 1, p. 53.Google Scholar
  2. 2.
    Barelko, V.V., Yuranov, I.A., Cherashev, A.F., Khrushch, A.P., Matyshak, V.A., Khomenko, T.I., Sil’chenkova, O.N., and Krylov, O.V., Doklady AN, 1998, vol. 361, no. 4, p. 485.Google Scholar
  3. 3.
    Matatov-Meytal, Yu. and Sheintuch, M., Appl. Catal., A, 2002, vol.231, nos. 1–2, p. 1.Google Scholar
  4. 4.
    Bal’zhinimaev, B.S., Suknev, A.P., Gulyaeva, Yu.K., and Kovalev, E.V., Katal. Prom-sti, 2015, vol. 15, no. 4, p. 22.Google Scholar
  5. 5.
    Simonova, L.G., Paukshtis, E.A., Dovlitova, L.S., Sadovskaya, E.M., and Bal’zhinimaev, B.S., Russ. J. Inorg. Chem., 2015, vol. 60, no. 9, p. 1052.CrossRefGoogle Scholar
  6. 6.
    Gulyaeva, Yu.K. and Bal’zhinimaev, B.S., Chem. Sustainable Dev., vol. 23, no. 3, p. 299.Google Scholar
  7. 7.
    Barelko, V.V., Kuznetsov, M.V., Dorokhov, V.G., and Parkin, I., Khim. Fiz., 2017, vol. 36, no. 7, p. 75.Google Scholar
  8. 8.
    Faro, A.C., Souza, K.R., Eon, J.G., Leitao, A.A., Rocha, A.B., and Capaz, R.B., Phys. Chem. Chem. Phys., 2003, no. 5, p. 3811.CrossRefGoogle Scholar
  9. 9.
    Faro, A.C., Souza, K.R., Camorin, V.L.D.L., and Cardoso, M.B., Phys. Chem. Chem. Phys., 2003, no. 5, p. 1932.CrossRefGoogle Scholar
  10. 10.
    Bednarova, L., Lyman, C.E., Rytter, E., and Holmen, A., J. Catal., 2002, vol. 211, p. 335.CrossRefGoogle Scholar
  11. 11.
    Buyanov, R.A. and Pakhomov, N.A., Kinet. Catal., 2001, vol. 42, no. 1, p. 72.CrossRefGoogle Scholar
  12. 12.
    Salmones, J., Wang, J-A., Galicia, J.A., and Aguilar-Rios, G., J. Mol. Catal. A: Chem., 2002, vol.184, p. 203.Google Scholar
  13. 13.
    Hullmann, D., Wendt, G., Singliar, U., and Ziegenbalg, G., Appl. Catal., A, 2002, vol. 225, p. 261.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. P. Didenko
    • 1
  • T. V. Dorofeeva
    • 1
  • L. A. Sementsova
    • 1
  • P. E. Chizhov
    • 1
  • E. I. Knerel’man
    • 1
  • G. I. Davydova
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations