Kinetics and Catalysis

, Volume 59, Issue 2, pp 160–173 | Cite as

Mechanochemical Activation of Cu–CeO2 Mixture as a Promising Technique for the Solid-State Synthesis of Catalysts for the Selective Oxidation of CO in the Presence of H2

  • A. A. Firsova
  • O. S. Morozova
  • G. A. Vorob’eva
  • A. V. Leonov
  • A. I. Kukharenko
  • S. O. Cholakh
  • E. Z. Kurmaev
  • V. N. Korchak
Article
  • 11 Downloads

Abstract

A new ecologically clean method for the solid-phase synthesis of oxide copper–ceria catalysts with the use of the mechanochemical activation of a mixture of Cu powder (8 wt %) with CeO2 was developed. It was established that metallic copper was oxidized by oxygen from CeO2 in the course of mechanochemical activation. The intensity of a signal due to metallic Cu in the X-ray diffraction analysis spectra decreased with the duration of mechanochemical activation. The Cu1+, Cu2+, and Ce3+ ions were detected on the sample surface by X-ray photoelectron spectroscopy. The application of temperature-programmed reduction (TPR) made it possible to detect two active oxygen species in the reaction of CO oxidation in the regions of 190 and 210–220°C by a TPR-H2 method and in the regions of 150 and 180–190°C by a TPR-CO method. It is likely that the former species occurred in the catalytically active nanocomposite surface structures containing Cu–O–Ce bonds, whereas the latter occurred in the finely dispersed particles of CuO on the surface of CeO2. The maximum conversion of CO (98%, 165°C) reached by the mechanochemical activation of the sample for 60 min was almost the same as conversion on a supported CuO/CeO2 catalyst.

Keywords

solid-phase synthesis mechanochemical activation oxide copper–cerium catalysts selective oxidation of CO in the presence of H2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avgoropoulos, G., Ioannides, T., Papadopoulou, Ch., Baatista, J., Hocevar, S., and Matralis, H., Catal. Today, 2002, vol. 75, p.157.CrossRefGoogle Scholar
  2. 2.
    Avgoropoulos, G. and Ioannides, T., Appl. Catal., A., 2003, vol. 244, p.155.CrossRefGoogle Scholar
  3. 3.
    Kahlich, M.J., Gasteiger, H.A., and Behm, R.J., J. Catal., 1997, vol. 171, p.93.CrossRefGoogle Scholar
  4. 4.
    Lee, S.J., Mukerjee, S., and Ticinelli, E.A., Electrochim. Acta, 1999, vol. 44, p. 3283.CrossRefGoogle Scholar
  5. 5.
    Avgoropoulos, G., Ioannides, T., Matralis, H., Baatista, J., and Hocevar, S., Catal. Lett., 2001, vol. 73, p.33.CrossRefGoogle Scholar
  6. 6.
    Igarashi, H., Uchida, H., Suzuki, M., and Watanabe, M., Appl. Catal., A, 1997, vol. 159, p. 159CrossRefGoogle Scholar
  7. 7.
    Ito, S.-I., Fujimori, T., Nagashima, K., Yuzaki, K., and Kumimori, K., Catal. Today, 2000, vol. 57, p.247.CrossRefGoogle Scholar
  8. 8.
    Schubert, M.M., Venugopal, A., Kahlich, M.J., Plzak, V., and Behm, R.J., J. Catal., 2004, vol. 222, p.32.CrossRefGoogle Scholar
  9. 9.
    Luengnaruemitchai, A., Osuwan, S., and Gulari, E., Int. J. Hydrogen Energy, 2004, vol. 29, p.429.CrossRefGoogle Scholar
  10. 10.
    Deng, W., de Jesus, J., Saltsburg, Y., and Flytzani-Stephanopoulos, M., Appl. Catal., A, 2005, vol. 291, p.126.CrossRefGoogle Scholar
  11. 11.
    Sedmak, G., Hacevak, S., and Levec, J., J. Catal., 2003, vol. 213, p.135.CrossRefGoogle Scholar
  12. 12.
    Marban, J. and Fuertes, A.B., Appl. Catal., B, 2005, vol. 57, no. 1, p.43.CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Fu, Q., and Flytzani-Stefanopoulos, M., Catal. Today, 2004, vols. 93–95, p.241.CrossRefGoogle Scholar
  14. 14.
    Oh, S.H. and Sinkevitch, R.M., J. Catal., 1993, vol. 142, p.254.CrossRefGoogle Scholar
  15. 15.
    Kim, D.H. and Cha, J.E., Catal. Lett., 2003, vol. 86, p.107.CrossRefGoogle Scholar
  16. 16.
    Martinez-Arias, A., Hungria, A.B., Fernandez-Garcia, M., Conesa, J.C., and Munuera, G., J. Power Sources, 2005, vol. 151, p. 32CrossRefGoogle Scholar
  17. 17.
    Martinez-Arias, A., Hungria, A.B., Munuera, G., and Gamarra, D., Appl. Catal., B, vol. 65, p.207.Google Scholar
  18. 18.
    Marino, F., Descorme, C., and Duprez, D., Appl. Catal., B, vol. 58, p.175.Google Scholar
  19. 19.
    Jobbagy, M., Marino, F., Schonbrod, B., Baronetti, G., and Laborde, M., Chem. Mater., 2006, vol. 18, p. 1945.CrossRefGoogle Scholar
  20. 20.
    Gurbani, A., Ayastuy, J.L., Gonzales-Marcos, M.P., Herrero, J.E., Guil, J.M., and Gutierrez-Ortiz, M.A., Int. J. Hydrogen Energy, 2009, vol. 34, p.547.CrossRefGoogle Scholar
  21. 21.
    Martinez-Arias, A., Fernandez-Garcia, M., Galvez, O., Coronado, J.M., Anderson, J.A., Conesa, J.C., Soria, J., and Munuera, G., J. Catal., 2000, vol. 195, p.207.CrossRefGoogle Scholar
  22. 22.
    Martinez-Arias, A., Hundria, A.B., Fernandez-Garcia, M., Conesa, J.C., and Munuera, G., J. Phys. Chem. B., 2004, vol. 108, p. 17983.CrossRefGoogle Scholar
  23. 23.
    Il’ichev, A.N., Firsova, A.A., and Korchak, V.N., Kinet. Catal., 2006, vol. 47, no. 4, p.602.Google Scholar
  24. 24.
    Gamarra, D., Hornes, A., Koppany, Z., Schay, Z., Munuera, G., Soria, J., and Martinez-Arias, A., J. Power Sources, 2007, vol. 169, p.110.CrossRefGoogle Scholar
  25. 25.
    Luo, V.-F., Song, Y.-P., Lu, J.Q., Wang, X.-Y., and Pu, Z.-Y., J. Phys. Chem. C, vol. 111, p. 12686.Google Scholar
  26. 26.
    Manzoli, M., di Monte, R., Boccuzzi, F., Coluccia, S., and Kaspar, J., Appl. Catal., B, vol. 61, p.192.Google Scholar
  27. 27.
    Wang, J.B. and Huang, T.-J., J. Catal., 2002, vol. 208, p. 370CrossRefGoogle Scholar
  28. 28.
    Firsova, A.A., Il’ichev, A.N., Khomenko, T.I., Gorobinskii, L.V., Maksimov, Yu.V., Suzdalev, I.P., and Korchak, V.N., Kinet. Catal., 2007, vol. 48, no. 2, p.282.CrossRefGoogle Scholar
  29. 29.
    Firsova, A.A., Khomenko, T.I., Il’ichev, A.N., and Korchak, V.N., Kinet. Catal., 2008, vol. 49, no. 5, p.682.CrossRefGoogle Scholar
  30. 30.
    Firsova, A.A., Khomenko, T.I., Sil’chenkova, O.N., and Korchak, V.N., Kinet. Catal., 2010, vol. 51, no. 2, p.299.CrossRefGoogle Scholar
  31. 31.
    Martinez-Arias, A., Soria, J., Cataluna, R., Conesa, J.C., and Cortes, C., Stud. Surf. Sci. Catal., 1998, vol. 116, p.591.CrossRefGoogle Scholar
  32. 32.
    Liu, W., Sarofim, A.F., and Flytzani-Stephanopoulos, M., Chem. Eng. Sci., 1995, vol. 49, p. 4871.CrossRefGoogle Scholar
  33. 33.
    Avgoropoulos, G., Ioannides, T., and Matralis, H., Appl. Catal., B, vol. 36, p.87.Google Scholar
  34. 34.
    Wang, X.Q., Rodriguez, J.A., Hanson, J.C., Gamarra, D., Martinez-Arias, A., and Fernandez-Garcia, M., J. Phys. Chem. B, vol. 109, p. 19595.Google Scholar
  35. 35.
    Iglesia, E., Proc. 9th European Congress on Catalysis, EuropaCat IX, Salamanca, 2009.Google Scholar
  36. 36.
    Ishikawa, A., Neurock, V., and Iglesia, E., J. Am. Chem. Soc., 2007, vol. 129, p. 13201.CrossRefGoogle Scholar
  37. 37.
    Gololobov, A.M., Bekk, I.E., Bragina, G.O., Zaikovskii, V.I., Ayupov, A.B., Telegina, N.S., Bukhtiyarov, V.I., and Stakheev, A.Yu., Kinet. Catal., 2009, vol. 50, no. 6, p.830.CrossRefGoogle Scholar
  38. 38.
    Gomez-Cortes, A., Marquez, Y., Arenas-Alatorre, J., and Diaz, G., Catal. Today, 2008, vols. 133–135, p.743.CrossRefGoogle Scholar
  39. 39.
    Firsova, A.A., Khomenko, T.I., Il’ichev, A.N., and Korchak, V.N., Kinet. Catal., 2011, vol. 52, no. 3, p.434.CrossRefGoogle Scholar
  40. 40.
    Benfer, S. and Knozinger, E., J. Mater. Chem., 1999, vol. 9, p. 1203.CrossRefGoogle Scholar
  41. 41.
    Beyer, M.K. and Clausen-Shaumann, H., Chem. Rev., 2005, vol. 105, p. 2921.CrossRefGoogle Scholar
  42. 42.
    Krylov, O.V., Firsova, A.A., Bobyshev, A.A., Radtsig, V.A., Shashkin, D.P., and Margolis, L.Ya., Catal. Today, 1992, vol. 13, p.381.CrossRefGoogle Scholar
  43. 43.
    Motozuka, S., Tagaya, M., Ikoma, T., Morinaga, M., Yoshioka, T., and Tanaka, J., J. Phys. Chem. C, vol. 117, p. 16104.Google Scholar
  44. 44.
    Firsova, A.A., Morozova, O.S., Leonov, A.V., Streletskii, A.N., and Korchak, V.N., Kinet. Catal., 2014, vol. 55, no. 6, p.777.CrossRefGoogle Scholar
  45. 45.
    Streletskii, A.N., in Proc. 2nd Int. Conf. on Structural Applications of Mechanical Alloying, Barbadillo, J.J., Ed., 1993, p.51.Google Scholar
  46. 46.
    Zeng, Sh., Zhang, W., Sliwa, M.I., and Su, H., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3597.CrossRefGoogle Scholar
  47. 47.
    Komateedi, N.R., Venkataswamy, P., and Benjaram, M.R., Ind. Eng. Chem. Res., 2011, vol. 50, p. 11960.CrossRefGoogle Scholar
  48. 48.
    Skarman, B., Nakayama, T., Grandjean, D., Benfield, R.E., Olsson, E., Niihara, K., and Wallenberg, L.R., Chem. Mater., 2002, vol. 14, p. 3686.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Firsova
    • 1
  • O. S. Morozova
    • 1
  • G. A. Vorob’eva
    • 1
  • A. V. Leonov
    • 2
  • A. I. Kukharenko
    • 3
    • 4
  • S. O. Cholakh
    • 4
  • E. Z. Kurmaev
    • 3
    • 4
  • V. N. Korchak
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  4. 4.Institute of Physics and TechnologyUral Federal UniversityYekaterinburgRussia

Personalised recommendations