Kinetics and Catalysis

, Volume 59, Issue 2, pp 128–135 | Cite as

Synergetic Effect of Sodium Borohydride Addition in Ammonia Borane Hydrolysis Reaction Mechanism and Kinetics

  • A. Kantürk Figen
  • K. Taşçi
  • B. Coşkuner Filiz
Article
  • 8 Downloads

Abstract

Synergetic effect of sodium borohydride (NaBH4) addition to ammonia borane (NH3BH3) hydrolysis reaction had been studied and iron-borate (FeB) was used to catalyze the reaction. Hydrogen generation performance of the hydrolysis reactions was compared for three different operating conditions: (1) in the presence of NaBH4 with FeB catalyst, (2) with FeB without NaBH4 addition and (3) in the presence of NaBH4 without FeB. It was found that addition of NaBH4 to the NH3BH3 hydrolysis reaction catalyzed by FeB resulted in the synergetic effect (synergetic factor (SF) > 0) and improved the hydrogen generation performance. Kinetic analysis showed that NaBH4 addition decreases the activation energy (Ea) from 52.11 ± 0.85 to 27.19 ± 0.44 kJ/mol. Simulation of hydrolysis kinetics curves indicated that addition of NaBH4 (the mole fraction of NaBH4 added to NH3BH3 is (1)) changed the three-dimensional diffusion mechanism to the one-dimensional one and brought on better hydrolysis properties in terms of higher hydrogen generation rate and lower induction time.

Keywords

ammonia borane synergetic effect sodium borohydride hydrogen nucleation-growth model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Umit, U.B. and Miele, P., Energy Environ. Sci., 2009, vol. 2, no. 6, p.627.CrossRefGoogle Scholar
  2. 2.
    Bououdina, M. and Guo, Z.X., Mater. Technol., 2000, vol. 15, no. 4, p.269.CrossRefGoogle Scholar
  3. 3.
    Rakap, M., Int. J. Green Energy, 2015, vol. 12, no. 12, p. 1288.CrossRefGoogle Scholar
  4. 4.
    Liang, H., Chen, G., Desinan, S., Rosei, R., Rosei, F., and Ma, D., Int. J. Hydrogen Energy, 2012, vol. 37, no. 23, p. 17921.CrossRefGoogle Scholar
  5. 5.
    Konus, N., Karatas, Y., and Gulcan, M., Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2016, vol. 46, no. 4, p.534.CrossRefGoogle Scholar
  6. 6.
    Yang, Y.W., Lu, Z.H., and Chen, X.S., Mater. Technol., 2015, vol. 30, no. 2, p. A89.CrossRefGoogle Scholar
  7. 7.
    Barakat, N.A., Moaaed, M., Taha, A., Nassar, M.M., Mahmoud, M.S., and Fouad, H., Int. J. Green Energy, 2016, vol. 13, no. 7, p.642.CrossRefGoogle Scholar
  8. 8.
    Li, J., Zhu, Q.L., and Xu, Q., Catal. Sci. Techol., 2015, vol. 5, no. 1, p.525.CrossRefGoogle Scholar
  9. 9.
    Feng, K., Zhong, J., Zhao, B., Zhang, H., Xu, L., Sun, X., and Lee, S.T., Angew. Chem., 2016, vol. 55, no. 39, p. 11950.CrossRefGoogle Scholar
  10. 10.
    Metin, Ö., Mendoza-Garcia, A., Dalmizrak, D., Gültekin, M.S., and Sun, S., Catal. Sci. Techol., 2016, vol. 6, p. 6137.CrossRefGoogle Scholar
  11. 11.
    Li, J., Zhu, Q.L., and Xu, Q., Chem. Commun., 2014, vol. 50, no. 44, p. 5899.CrossRefGoogle Scholar
  12. 12.
    Fernandes, R., Patel, N., Miotello, A., Jaiswal, R., and Kothari, D.C., Int. J. Hydrogen Energy, 2012, vol. 37, no. 3, p. 2397.CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Wu, C., Chen, Y., Huang, Z., Luo, L., Wu, H., and Liu, P., J. Power Sources, 2014, vol. 261, p.7.CrossRefGoogle Scholar
  14. 14.
    Simagina, V.I., Komova, O.V., Ozerova, A.M., Netskina, O.V., Odegova, G.V., Kellerman, D.G., Bulavchenko, O.A., and Ishchenko, A.V., Appl. Catal., A, 2011, vol. 394, no. 1, p.86.CrossRefGoogle Scholar
  15. 15.
    Huang, Z., Wu, C., Chen, Y., and Wang, X., Int. J. Hydrogen Energy, 2012, vol. 37, p. 5137.CrossRefGoogle Scholar
  16. 16.
    An, T., Xiong, Y., Li, G., Zha, C., and Zhu, X., J. Photochem. Photobiol., A, 2002, vol. 152, no. 1, p.155.CrossRefGoogle Scholar
  17. 17.
    Durucan, C. and Brown, P.W., J. Am. Ceram. Soc., 2002, vol. 85, no. 8, p. 2013.CrossRefGoogle Scholar
  18. 18.
    Huang, M., Quyang, L., Wang, H., Liu, J., and Zhu, M., Int. J. Hydrogen Energy, 2015, vol. 40, p. 6145.CrossRefGoogle Scholar
  19. 19.
    Hicks, C.R., Fundamental Concepts in the Design of Experiments, N.Y.: Holt, Rinehart and Winston, 1964.Google Scholar
  20. 20.
    Steinfeld, J.I., Francisco, J.S., and Hase, W.L., Chemical Kinetics and Dynamics, Englewood Cliffs, New Jersey: Prentice Hall, 1989.Google Scholar
  21. 21.
    Ocon, J.D., Tuan, T.N., Yi, Y., Leon, R.L., Lee, J.K., and Lee, J., J. Power Sources, 2013, vol. 243, p.444.CrossRefGoogle Scholar
  22. 22.
    Huang, J.M., Ouyang, L.Z., Wen, Y.J., Wang, H., Liu, J.W., Chen, Z.L., and Zhu, M., Int. J. Hydrogen Energy, 2014, vol. 39, p. 6813.CrossRefGoogle Scholar
  23. 23.
    Huang, J.M., Duan, R.M., Ouyang, L.Z., Wen, Y.J., Wang, H., and Zhu, M., Int. J. Hydrogen Energy, 2014, vol. 39, p. 13564.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Kantürk Figen
    • 1
  • K. Taşçi
    • 1
  • B. Coşkuner Filiz
    • 1
  1. 1.Department of Chemical EngineeringYildiz Technical UniversityEsenler, IstanbulTurkey

Personalised recommendations