Kinetics and Catalysis

, Volume 59, Issue 2, pp 143–149 | Cite as

The Study of CrO x -Containing Catalysts Supported on ZrO2, CeO2, and Ce x Zr(1–x)O2 in Isobutane Dehydrogenation

Article
  • 8 Downloads

Abstract

Olefin hydrocarbons are valuable raw materials for petrochemical and polymer manufacturing. Highly effective, but toxic chromium-containing catalytic materials are the most widely used catalysts to obtain olefins in industry. In this regard, the urgent challenge to increase the efficiency of oil processing is to develop the catalysts with low content of harmful active component. In the present study, the catalysts with low chromium content (1 theoretical monolayer = 5 Cr atoms per nm2 of support) were synthesized by incipient wetness impregnation of the supports (Al2O3, ZrO2, CeO2, and Ce x Zr(1–x)O2). The samples obtained were characterized by low-temperature nitrogen adsorption, X-ray diffraction and H2-temperature-programmed reduction methods. The catalytic properties of the catalysts were tested in isobutane dehydrogenation reaction. It was shown that the state of chromium on the surface is different over different supports. For the CrO x /CeO2 catalyst, the formation of Cr2O3 particles with low activity in the dehydrogenation reaction was observed. For other samples, a highly disperse X-ray amorphous state of chromium was characteristic. The catalyst based on Ce x Zr(1–x)O2 was the most active in isobutane dehydrogenation reaction due to possible stabilization of chromium as Cr(V) state.

Keywords

Cr-containing catalysts ZrO2 CeO2 CexZr(1–x)O2 isobutane dehydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rashidi, M., Nikazar, M., Rahmani, M., and Mohamadghasemi, Z., Chem. Eng. Res. Des., 2015, vol. 95, p.239.CrossRefGoogle Scholar
  2. 2.
    Pakhomov, N.A., Kashkin, V.N., Nemykina, E.I., Molchanov, V.V., Nadtochiy, V.I., and Noskov, A.S., Chem. Eng. J., 2009, vol. 154, p.185.CrossRefGoogle Scholar
  3. 3.
    Shee, D. and Sayari, A., Appl. Catal., A., 2010, vol. 389, p.155.CrossRefGoogle Scholar
  4. 4.
    Tan, S., Kim, S.-J., Moore, J.S., Liu, Y., Dixit, R.S., Pendergast, J.G., Sholl, D.S., Nair, S., and Jones, C.W., ChemCatChem, 2016, vol. 8, p.214.CrossRefGoogle Scholar
  5. 5.
    Raju, G., Reddy, B.M., and Park, S.-E., J. CO2 Util., 2014, vol. 5, p.41.CrossRefGoogle Scholar
  6. 6.
    Tan, S., Gil, L.B., Subramanian, N., Sholl, D.S., Nair, S., Jones, C.W., Moore, J.S., Liu, Y., Dixit, R.S., and Pendergast, J.G., Appl. Catal., A., 2015, vol. 498, pp. 167–175.CrossRefGoogle Scholar
  7. 7.
    Rodemerck, U., Sokolov, S., Stoyanova, M., Bentrup, U., Linke, D., and Kondratenko, E.V., J. Catal., 2016, vol. 338, p.174.CrossRefGoogle Scholar
  8. 8.
    Sattler, J.J.H.B., Gonzalez-Jimenez, I.D., Luo, L., Stears, B.A., Malek, A., Barton, D.G., Kilos, B.A., Kaminsky, M.P., Verhoeven, T.W.G.M., Koers, E.J., Baldus, M., and Weckhuysen, B.M., Angew. Chem., 2014, vol. 53, p. 9251.CrossRefGoogle Scholar
  9. 9.
    Michorczyk, P., Kustrowski, P., Kolak, A., and Zimowska, M., Catal. Commun., 2013, vol. 35, p.95.CrossRefGoogle Scholar
  10. 10.
    Wang, G., Sun, N., Gao, C., and Zhu, X., Appl. Catal., A, 2014, vol. 478, p.71.CrossRefGoogle Scholar
  11. 11.
    Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, p. 10613.CrossRefGoogle Scholar
  12. 12.
    Hakuli, A., Kytökivi, A., and Krause, O., Appl. Catal., A, 1999, vol. 4827, p.1.Google Scholar
  13. 13.
    Fang, D., Zhao, J., Li, W., Fang, X., Yang, X., Ren, W., and Zhang, H., J. Energy Chem., 2015, vol. 24, p.101.CrossRefGoogle Scholar
  14. 14.
    Gomez Sanz, S., McMillan, L., McGregor, J., Zeitler, J.A., Al-Yassir, N., Al-Khattaf, S., and Gladden, L.F., Catal. Sci. Technol., 2016, vol. 6, p. 1120.CrossRefGoogle Scholar
  15. 15.
    Botavina, M.A., Evangelisti, C., Agafonov, Y.A., Gaidai, N.A., Panziera, N., Lapidus, A.L., and Martra, G., Chem. Eng. J., 2011, vol. 166, p. 1132.CrossRefGoogle Scholar
  16. 16.
    Michorczyk, P., Ogonowski, J., and Zenczak, K., J. Mol. Catal. A: Chem., 2011, vol. 349, p.1.CrossRefGoogle Scholar
  17. 17.
    Sloczynski, J., Grzybowska, B., Kozlowska, A., Samson, K., Grabowski, R., Kotarba, A., and Hermanowska, M., Catal. Today, 2011, vol. 169, p.29.CrossRefGoogle Scholar
  18. 18.
    Vuurman, M.A., Wachs, I.E., Stufkens, D.J., and Oskam, A., J. Mol. Catal., 1993, vol. 80, p.209.CrossRefGoogle Scholar
  19. 19.
    Mimura, N., Okamoto, M., Yamashita, H., Oyama, S.T., and Murata, K., J. Phys. Chem. B, vol. 110, p. 21764.Google Scholar
  20. 20.
    Ma, F., Chen, S., Li, Y., Zhou, H., Xu, A., and Lu, W., Appl. Surf. Sci., 2014, vol. 313, p.654.CrossRefGoogle Scholar
  21. 21.
    Xu, L., Wang, Z., and Song, H., Catal. Commun., 2013, vol. 35, p.76.CrossRefGoogle Scholar
  22. 22.
    Zhao, H., Song, H., and Chou, L., Microporous Mesoporous Mater., 2013, vol. 181, p.182.CrossRefGoogle Scholar
  23. 23.
    De Rossi, S., Casaletto, M.P., Ferraris, G., Cimino, A., and Minelli, G., Appl. Catal., A, 1998, vol. 167, p.257.CrossRefGoogle Scholar
  24. 24.
    Otroshchenko, T., Radnik, J., Schneider, M., Rodemerck, U., Linke, D., and Kondratenko, E.V., Chem. Commun., 2016, vol. 52, p. 8164.CrossRefGoogle Scholar
  25. 25.
    Rezaei, M., Alavi, S.M., Sahebdelfar, S., and Yan, Z.-F., Powder Technol., 2006, vol. 168, p.59.CrossRefGoogle Scholar
  26. 26.
    Bugrova, T.A., Litvyakova, N.N., and Mamontov, G.V., Kinet. Catal., 2015, vol. 56, no. 6, p.758.CrossRefGoogle Scholar
  27. 27.
    Bekmukhamedov, G.E., Mukhamed’yarova, A.N., Egorova, S.R., and Lamberov, A.A., Catalysts, 2016, vol. 6, no. (10).Google Scholar
  28. 28.
    Neri, G., Pistone, A., De Rossi, S., Rombi, E., Milone, C., and Galvagno, S., Appl. Catal., A, 2004, vol. 260, p.75.CrossRefGoogle Scholar
  29. 29.
    Dittmar, A., Hoang, D.L., and Martin, A., Thermochim. Acta, 2008, vol. 470, p.40.CrossRefGoogle Scholar
  30. 30.
    Moriceau, P., Grzybowska, B., Gengembre, L., and Barbaux, Y., Appl. Catal., A, 2000, vol. 199, p.73.CrossRefGoogle Scholar
  31. 31.
    Martinez-Huerta, M.V., Deo, G., Luis, J., Fierro, G., and Banares, M.A., J. Phys. Chem., vol. 111, p. 18708.Google Scholar
  32. 32.
    Mullins, D.R., Surf. Sci., 2015, vol. 70, p.42.CrossRefGoogle Scholar
  33. 33.
    Wei, C., Xue, F., Miao, C., Yue, Y., Yang, W., Hua, W., and Gao, Z., Chin. J. Chem., 2017, vol. 35, p.1619.CrossRefGoogle Scholar
  34. 34.
    Nemykina, E.I., Pakhomov, N.A., Danilevich, V.V., Rogov, V.A., Zaikovskii, V.I., Larina, T.V., and Molchanov, V.V., Kinet. Catal., 2010, vol. 51, no. 6, pp. 898–906.CrossRefGoogle Scholar
  35. 35.
    Cutrufello, M.G., De Rossi, S., Ferino, I., Monaci, R., Rombi, E., and Solinas, V., Thermochim. Acta, 2005, vol. 434, p.62.CrossRefGoogle Scholar
  36. 36.
    Cavani, F., Koutyrev, M., Trifro, F., Bartolini, A., Ghisletti, D., Iezzi, R., Santucci, A., and Del Piero, G., J. Catal., 1996, vol. 158, p.236.CrossRefGoogle Scholar
  37. 37.
    Hardcastle, F.D. and Wachs, I.E., J. Mol. Catal., 1988, vol. 46, p.173.CrossRefGoogle Scholar
  38. 38.
    Fridman, V.Z., Xing, R., and Severance, M., Appl. Catal., A, 2016, vol. 523, p. 39.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations