Advertisement

Kinetics and Catalysis

, Volume 59, Issue 1, pp 6–10 | Cite as

Nitromethane Isomerization during Its Thermal Decay

  • P. A. Vlasov
  • N. M. Kuznetsov
  • Yu. P. Petrov
  • S. V. Turetskii
Article
  • 22 Downloads

Abstract

Different aspects of problem of nitromethane (NM) isomerization during its thermal decay in a wide range of temperatures and pressures are analyzed. Based on the experimental and the published data on new theoretical concepts, two different mechanisms of NM decay, direct and isomerizable, are practically combined into a single complex mechanism.

Keywords

nitromethane thermal decay mechanism methyl nitrite isomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hillenbrand, K.J. and Kilpatrick, M.L., J. Chem. Phys., 1953, vol. 21, no. 3, p.525.CrossRefGoogle Scholar
  2. 2.
    Bradley, J.N., Trans. Faraday Soc., 1961, vol. 57, p. 1750.CrossRefGoogle Scholar
  3. 3.
    Borisov, A.A., Zaslonko, I.S., and Kogarko, S.M., Fiz. Goreniya Vzryva, 1968, vol. 3, p.387.Google Scholar
  4. 4.
    Zaslonko, I.S., Kogarko, S.M., Mozzhukhin, E.V., and Petrov, Yu.P., Kinet. Katal., 1972, vol. 13, no. 5, p. 1113.Google Scholar
  5. 5.
    Glanzer, K. and Troe, J., Helv. Chim. Acta, 1972, vol. 55, p. 2884.CrossRefGoogle Scholar
  6. 6.
    Dewar, M.J.S., Ritchie, J.P., and Alster, J., J. Org. Chem., 1985, vol. 50, p. 1031.CrossRefGoogle Scholar
  7. 7.
    Wodtke, A.M., Hintsa, E.J., and Lee, Y.T., J. Chem. Phys., 1986, vol. 84, no. 2, p. 1044.CrossRefGoogle Scholar
  8. 8.
    Hu, W.-F., He, T.-J., Chen, D.-M., and Liu, F.-C., J. Phys. Chem. A, 2002, vol. 106, p. 7294.CrossRefGoogle Scholar
  9. 9.
    Nguyen, M.T., Le, H.T., Hajgato, B., Veszpremi, T., and Lin, M.C., J. Phys. Chem. A, 2003, vol. 107, p. 4286.CrossRefGoogle Scholar
  10. 10.
    Guo, Y.Q., Bhattacharya, A., and Bernstein, E.R., J. Phys. Chem. A, 2009, vol. 113, p.85.CrossRefPubMedGoogle Scholar
  11. 11.
    Troe, J., Ber. Bunsen-Ges. Phys. Chem., 1974, vol. 78, p.478.Google Scholar
  12. 12.
    Luther, K. and Troe, J., 17th Int. Symp. on Combustion, Pittsburg, 1979, p.535.Google Scholar
  13. 13.
    Troe, J., J. Phys. Chem., 1979, vol. 83, no. 1, p.114.CrossRefGoogle Scholar
  14. 14.
    Troe, J., Ber. Bunsen-Ges. Phys. Chem., 1983, vol. 87, p.161.CrossRefGoogle Scholar
  15. 15.
    Petrov, Yu.P., Karasevitch, Yu.K., and Turetskii, S.V., Proc. of the 6th Mediterranean Combustion Symposium, Corsica (France), 2009, p.46.Google Scholar
  16. 16.
    Petrov, Yu.P., Karasevich, Yu.K., and Turetskii, S.V., Khim. Fiz., 2010, vol. 29, no. 8, p.38.Google Scholar
  17. 17.
    Petrov, Yu.P., Turetskii, S.V., and Bulgakov, A.V., 33rd Int. Symposium on Combustion, Pittsburg, 2010.Google Scholar
  18. 18.
    Kuznetsov, N.M., Petrov, Yu.P., and Turetskii, S.V., Proc. 23rd Int. Colloquium on the Dynamics of Explosions and Reactive Systems (23rd ICDERS), Irvine (USA), 2011, p.119.Google Scholar
  19. 19.
    Kuznetsov, N.M., Petrov, Yu.P., and Turetskii, S.V., Proc. of the Canadian Section of the Combustion Institute. Spring Technical Meeting, Winnipeg, 2011.Google Scholar
  20. 20.
    Kuznetsov, N.M., Petrov, Yu.P., and Turetskii, S.V., Kinet. Katal., 2012, vol. 53, no. 1, p.3.CrossRefGoogle Scholar
  21. 21.
    Kuznetsov, N.M., Petrov, Yu.P., and Turetskii, S.V., Kinet. Katal., 2013, vol. 54, no. 2, p.139.CrossRefGoogle Scholar
  22. 22.
    Vlasov, P.A., Kuznetsov, N.M., Petrov, Yu.P., and Turetskii, S.V., Proc. of 24th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Taipei (Taiwan), 2013.Google Scholar
  23. 23.
    Zaslonko, I.S., Petrov, Yu.P., and Smirnov, V.N., Kinet. Katal., 1997, vol. 38, no. 3, p.353.Google Scholar
  24. 24.
    Zhu, R.S., Raghunath, P., and Lin, M.C., J. Phys. Chem. A, 2013, vol. 117, p. 7308.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhu, R.S. and Lin, M.C., Chem. Phys. Lett., 2009, vol. 478, p.11.CrossRefGoogle Scholar
  26. 26.
    Bowman, J.M. and Shepler, B.C., Ann. Rev. Phys. Chem., 2011, vol. 62, p.531.CrossRefGoogle Scholar
  27. 27.
    Herath, N. and Suits, A.G., J. Phys. Chem. Lett., 2011, vol. 2, p.642.CrossRefGoogle Scholar
  28. 28.
    Homayoon, Z., Bowman, J.M., Dey, A., Abeysekera, Ch., Fernando, R., and Suits, A.G., Zeitschr. Phys. Chem., 2013, vol. 227, p. 1267.Google Scholar
  29. 29.
    Homayoon, Z. and Bowman, J.M., J. Phys. Chem. A, 2013, vol. 117, p. 11665.CrossRefPubMedGoogle Scholar
  30. 30.
    Nikolaeva, E.V., Shamov, A.G., Chachkov, D.V., Gordeev, E.A., and Khrapkovskii, G.M., Khimiya I Komp. Model. Butlerov. Soobshch., 2000, vol. 1, no. 3, p.15.Google Scholar
  31. 31.
    Nikolaeva, E.V., Shamov, A.G., Chachkov, D.V., Gordeev, E.A., and Khrapkovskii, G.M., Strukt. Din. Mol. Sist., 2003, vol. 10, no. 3, p.241.Google Scholar
  32. 32.
    Troe, J., J. Chem. Phys., 1977, vol. 66, no. 11, p. 4758.CrossRefGoogle Scholar
  33. 33.
    Seljeskog, M., PhD Thesis, Norwey: University of Science and Technology, 2002.Google Scholar
  34. 34.
    Annesley, C.J., Randazzo, J.B., Klippenstein, S.J., Harding, L.B., Jasper, A.W., Georgievskii, Yu., Ruscic, B., and Tranter, R.S., J. Phys. Chem. A, 2015, vol. 119, p. 7872.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Vlasov
    • 1
    • 2
  • N. M. Kuznetsov
    • 1
  • Yu. P. Petrov
    • 1
  • S. V. Turetskii
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations