Kinetics and Catalysis

, Volume 59, Issue 1, pp 11–16 | Cite as

Measurement of the Rate Constant of a Reaction of Chlorine Atoms with CH3Br in a Temperature Range of 298–358 K Using the Resonance Fluorescence of Chlorine Atoms

  • I. K. Larin
  • A. I. Spasskii
  • E. M. TrofimovaEmail author
  • N. G. Proncheva


The rate constant of the reaction of chlorine atoms with CH3Br was measured in a temperature range of 298–358 K using the resonance fluorescence of chlorine atoms. The possible role of this reaction in atmospheric chemistry and fire extinguishing was discussed. It was found that this reaction is homogeneous in contrast to the previously studied reaction of chlorine atoms with CH3I, with occurs at the reactor surface.


atmospheric chemistry chlorine reaction with CH3Br resonance fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Global Ozone Research and Monitoring Project, Geneva, Switzerland, 2007, p.572.Google Scholar
  2. 2.
    Solomon, S., Mills, M., Heidt, L.E., Pollock, W.H., and Tuck, A.F., J. Geophys. Res., 1992, vol. 97, p.825.CrossRefGoogle Scholar
  3. 3.
    Daniel, J.S., Solomon, S., Portmann, R.W., and Garcia, R.R., J. Geophys. Res., 1999, vol. 104, p. 23871.CrossRefGoogle Scholar
  4. 4.
    Baker, J.M., Reeves, C.E., Nightingale, P.D., Penkett, S.A., Gibb, S.W., and Hatton, A.D., Mar. Chem., 1999, vol. 64, p.267.CrossRefGoogle Scholar
  5. 5.
    Mano, S. and Andreae, M.O., Science, 1994, vol. 263, p. 1225.CrossRefGoogle Scholar
  6. 6.
    Yagi, K., Williams, J., Wang, N.Y., and Cicerone, R.J., Science, 1995, vol. 267, p. 1979.CrossRefPubMedGoogle Scholar
  7. 7.
    Global Ozone Research and Monitoring Project, Geneva, Switzerland, 2011, p.516.Google Scholar
  8. 8.
    Tapscott, R.E., Sheinson, R.S., Babushok, V., Nyden, M.R., and Gann, R.G., NIST Technical Note, 2001, p. 1443.Google Scholar
  9. 9.
    Buekens, A. and Huang, H., J. Hazard. Mater., 1998, vol. 62, p.1.CrossRefGoogle Scholar
  10. 10.
    Finlayson-Pitts, B.J., Ezell, M.J., and Pitts, J.N., Jr., Nature, 1989, vol. 337, p.241.CrossRefGoogle Scholar
  11. 11.
    Keene, W.C., Pszenny, A.A.P., Jacob, D.J., Duce, R.A., and Schultz-Tokos, R.A., Global Biogeochem. Cy, 1990, vol. 4, no. 4, p.407.CrossRefGoogle Scholar
  12. 12.
    Enami, S., Hashimoto, S., and Kawasaki, M., J. Phys. Chem. A, 2005, vol. 109, p. 1587.CrossRefPubMedGoogle Scholar
  13. 13.
    Vogt, R., Crutzen, P.J., and Sander, R., Nature, 1996, vol. 383, p.327.CrossRefGoogle Scholar
  14. 14.
    Gilles, M.K., Talukdar, R.K., and Ravishankara, A.R., J. Phys. Chem. A, 2000, vol. 104, p. 8945.CrossRefGoogle Scholar
  15. 15.
    Lobert, J.M., Keene, W.C., Logan, J.A., and Yevich, R., J. Geophys. Res., 1999, vol. 104, p. 8373.CrossRefGoogle Scholar
  16. 16.
    McFiggans, G., Cox, R.A., Mossinger, J.C., Allan, B.J., and Plane, J.M.C., J. Geophys. Res., 2002, vol. 107, p. 4271.CrossRefGoogle Scholar
  17. 17.
    Larin, I.K., Spasskii, A.I., Trofimova, E.M., and Turkin, L.E., Kinet. Katal., 2010, vol. 51, no. 3, p.369.CrossRefGoogle Scholar
  18. 18.
    Behnke, W. and Zetsch, C., J. Aerosol Sci., 1989, vol. 20, p. 1167.CrossRefGoogle Scholar
  19. 19.
    Kikoin, I.K., Tablitsy fizicheskikh velichin (Tables of physical values), Moscow: Atomizdat, 1976.Google Scholar
  20. 20.
    Larin, I.K., Messineva, N.A., Nevozhai, D.V., Spasskii, A.I., and Trofimova, E.M., Kinet. Katal., 2000, vol. 41, no. 3, p.346.CrossRefGoogle Scholar
  21. 21.
    Hickson, K.M., Bergeat, A., and Costes, M., J. Phys. Chem. A, 2010, vol. 114, p. 3038.CrossRefPubMedGoogle Scholar
  22. 22.
    Larin, I.K., Spasskii, A.I., Trofimova, E.M., and Turkin, L.E., Kinet. Katal., 2003, vol. 44, no. 2, p.218.CrossRefGoogle Scholar
  23. 23.
    Orkin, V.L., Khamaganov, V.G., and Larin, I.K., Int. J. Chem. Kinet., 1993, vol. 25, p.67.CrossRefGoogle Scholar
  24. 24.
    Gershenzon, Yu.M., Rozenshtein, V.B., Spasskii, A., and Kogan, A.M., Dokl. Akad. Nauk SSSR, 1972, vol. 205, p.624.Google Scholar
  25. 25.
    Hwang, C.J., Jiang, R.C., and Su, T.M., J. Chem. Phys., 1986, vol. 84, p. 5095.CrossRefGoogle Scholar
  26. 26.
    Cotter, E.S.N., Booth, N.J., Canosa-Mas, C.E., Gray, D.J., Shellcross, D.E., and Wayne, R.P., Phys. Chem. Chem. Phys., 2001, vol. 3, p.402.CrossRefGoogle Scholar
  27. 27.
    Hwang, C.J. and Su, T.M., J. Chem. Phys., 1987, vol. 91, p. 2351.CrossRefGoogle Scholar
  28. 28.
    Piety, C.A., Soller, R., Nicovich, J.M., McKee, M.L., and Wine, P.H., Chem. Phys., 1998, vol. 231, p.155.CrossRefGoogle Scholar
  29. 29.
    Kambanis, K.G., Lazarou, Y.G., and Papagiannakopoulos, P., J. Phys. Chem. A, 1997, vol. 101, p. 8496.CrossRefGoogle Scholar
  30. 30.
    Gierczak, T., Goldfarb, L., Sueper, D., Ravishankara, A.R., Int. J. Chem. Kinet., 1994, vol. 26, p.719.CrossRefGoogle Scholar
  31. 31.
    Gola, A.A., Sarzynski, D., Drys, A., and Jodkowski, J.T., Chem. Phys. Lett., 2010, vol. 486, p.7.CrossRefGoogle Scholar
  32. 32.
    Goliff, W.S. and Rowland, F.S., Geophys. Rev. Lett., 1997, vol. 24, p. 3029.CrossRefGoogle Scholar
  33. 33.
    Irikura, K.K. and Francisco, J.S., J. Phys. Chem. A, 2007, vol. 111, p. 6852.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. K. Larin
    • 1
  • A. I. Spasskii
    • 1
  • E. M. Trofimova
    • 1
    Email author
  • N. G. Proncheva
    • 2
  1. 1.Talrose Institute of Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations