Skip to main content
Log in

Lignin conversion in supercritical ethanol in the presence of solid acid catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effects of sulfated ZrO2 and ZrO2-Al2O3 catalysts and acidic zeolite catalysts with various Si/Al ratios on the thermal conversion of alkali lignin in supercritical ethanol at 300–400°C and on the composition of the resulting products have been investigated. All of the catalysts enhance lignin conversion into liquid products. The strongest effect with the catalysts based on sulfated ZrO2 is attained at 400°C; with the zeolites, at 350°C. The catalysts diminish the concentration of phenol and its derivatives and increase the concentration of ethers (mainly the 1,1-diethoxyethane concentration) in the liquid products. The zeolite catalysts are preferable, since the reaction over the ZrO2-containing catalysts produces gaseous compounds in higher yields. The maximum lignin conversion and a high yield of low-boiling liquid products are achieved at 350°C with the zeolite catalyst with Si/Al = 30, which contains a high concentration of acid sites that are stable at elevated temperatures. The most abundant phenolic liquid products of lignin conversion over the zeolite catalysts at 350°C are methoxyphenols and their methylated and ethylated derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson, V., Introduction to Renewable Energy, Boca Raton, Fla.: CRC, 2011.

    Google Scholar 

  2. Introduction to Chemicals from Biomass, Clark, J. and Deswarte, F., Eds., Chichester: Wiley, 2008.

    Google Scholar 

  3. Corma, A., Iborra, S., and Velty, A., Chem. Rev., 2007, vol. 107, p. 2411.

    Article  CAS  Google Scholar 

  4. Fengel, D. and Wegener, G., Wood: Chemistry, Ultrastructure, Reaction, Berlin: Walter de Gruyter, 1984.

    Google Scholar 

  5. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weekhuysen, B.M., Chem. Rev., 2010, vol. 110, p. 3552.

    Article  CAS  Google Scholar 

  6. Randey, H.P. and Kim, C.S., Chem. Eng. Technol., 2011, vol. 34, no. 1, p. 29.

    Article  Google Scholar 

  7. Kleinert, M. and Barth, T., Chem. Eng. Technol., 2008, vol. 31, no. 5, p. 736.

    Article  CAS  Google Scholar 

  8. Mullen, Ch.A. and Boateng, A.A., Fuel Process. Technol., 2010, vol. 91, no. 11, p. 1446.

    Article  CAS  Google Scholar 

  9. Maa, Z., Troussarda, E., and Bokhovena, J.A., Appl. Catal., A, 2012, vol. 423, p. 130.

    Article  Google Scholar 

  10. Ibañez, M., Valle, B., Bilbao, J., Gayubo, A.G., and Castaño, P., Catal. Today, 2012, vol. 195, p. 106.

    Article  Google Scholar 

  11. Zhao, C., Kou, Y., Lemonidou, A.A., Li, X., and Lercher, J.A., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, p. 3987.

    Article  CAS  Google Scholar 

  12. Jackson, M., Compton, D., and Boateng, A., J. Anal. Appl. Pyrolysis, 2009, vol. 85, p. 226.

    Article  CAS  Google Scholar 

  13. Yoshikawa, T., Na-Ranong, D., Tago, T., and Masuda, T., J. Jpn. Pet. Inst., 2010, vol. 53, p. 178.

    Article  CAS  Google Scholar 

  14. Funai, S., Satoh, Y., Satoh, Y., Tajima, K., Tago, T., and Masuda, T., Top. Catal., 2010, vol. 53, p. 654.

    Article  CAS  Google Scholar 

  15. Na-Ranong, D., Yuangsaward, R., Tago, T., and Masuda, T., Korean J. Chem. Eng., 2008, vol. 25, p. 426.

    Article  CAS  Google Scholar 

  16. Masuda, T., Kondo, Y., Miwa, M., Shimotori, Y., Mukai, S.R., Hashimoto, K., Takano, M., Kawasaki, S., and Yoshida, S., Chem. Eng. Sci., 2001, vol. 56, p. 897.

    Article  CAS  Google Scholar 

  17. Bogolitsyn, K.G., Sverkhkrit. Flyuidy: Teor. Prakt., 2007, vol. 2, no. 1, p. 16.

    Google Scholar 

  18. Kleinert, M. and Barth, T., Energy Fuels, 2008, no. 22, p. 1371.

    Google Scholar 

  19. Miller, J.E., Evans, L., Littlewolf, A., and Trudell, D.E., Fuel, 1999, vol. 78, p. 1362.

    Article  Google Scholar 

  20. Bazarnova, N.G., Khimiya drevesiny i ee osnovnykh komponentov (Chemistry of Wood and Its Main Components), Barnaul: Azbuka, 2002.

    Google Scholar 

  21. Sharypov, V.I., Grishechko, L.I., Tarasova, L.S., Baryshnikov, S.V., Celzard, A., and Kuznetsov, B.N., J. Sib. Fed. Univ. Chem., 2011, vol. 4, no. 3, p. 221.

    CAS  Google Scholar 

  22. Khusnutdinov, I.Sh., Akhmetzyanov, A.M., Gavrilov, V.I., Zabbarov, R.R., and Khanova, A.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2009, vol. 52, no. 11, p. 119.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kuznetsov.

Additional information

Original Russian Text © B.N. Kuznetsov, V.I. Sharypov, N.V. Chesnokov, N.G. Beregovtsova, S.V. Baryshnikov, A.V. Lavrenov, A.V. Vosmerikov, V.E. Agabekov, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 4, pp. 436–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Sharypov, V.I., Chesnokov, N.V. et al. Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinet Catal 56, 434–441 (2015). https://doi.org/10.1134/S0023158415040114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415040114

Keywords

Navigation