Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 10, pp 1655–1659 | Cite as

Crystal Structures of Bromobismuthate Complexes ((3-MePy)2C2)4[Bi2Br11][BiBr6] and (3-MePy)2C2[Bi2Br11](Br3)

  • S. A. AdoninEmail author
  • M. N. Sokolov
  • V. P. Fedin
Article
  • 1 Downloads

Abstract

By the reaction of a [BiX6]3− solution in HBr with the bromide salt of bis-(3-methyl-1-pyridino)ethane ((3-MePy)2C2Br2) the bromobismuthate complex ((3-MePy)2C2)4[Bi2Br11][BiBr6] (1) is obtained, which, when kept in the Br2 solution in HBr, transforms into ((3-MePy)2C2)3 [Bi2Br11](Br3) (2). Compounds 1 and 2 are characterized by single crystal XRD.

Keywords

bismuth halide complexes polynuclear complexes polyhalides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

The authors are grateful to the Russian Science Foundation for the support (Grant No. 18-73-10040).

Conflict of Interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    T. A. Shestimerova, N. A. Yelavik, A. V. Mironov, A. N. Kuznetsov, M. A. Bykov, A. V. Grigorieva, V. V. Utochnikova, L. S. Lepnev, and A. V. Shevelkov. Inorg. Chem., 2018, 57, 4077–4087.CrossRefGoogle Scholar
  2. 2.
    T. A. Shestimerova, N. A. Golubev, N. A. Yelavik, M. A. Bykov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, and A. V. Shevelkov. Cryst. Growth Des., 2018, 18, 2572–2578.CrossRefGoogle Scholar
  3. 3.
    R.-G. Lin, G. Xu, G. Lu, M.-S. Wang, P.-X. Li, and G.-C. Guo. Inorg. Chem., 2014, 53, 5538–5545.CrossRefGoogle Scholar
  4. 4.
    R.-G. Lin, G. Xu, M.-S. Wang, G. Lu, P.-X. Li, and G.-C. Guo. Inorg. Chem., 2013, 52, 1199–1205.CrossRefGoogle Scholar
  5. 5.
    N. Leblanc, W. Bi, N. Mercier, P. Auban-Senzier, and C. Pasquier. Inorg. Chem., 2010, 49, 5824–5833.CrossRefGoogle Scholar
  6. 6.
    J. C. Ahern, A. D. Nicholas, A. W. Kelly, B. Chan, R. D. Pike, and H. H. Patterson. Inorg. Chim. Acta, 2018, 478, 71–76.CrossRefGoogle Scholar
  7. 7.
    A. W. Kelly, A. Nicholas, J. C. Ahern, B. Chan, H. H. Patterson, and R. D. Pike. J. Alloys Compd., 2016, 670, 337–345.CrossRefGoogle Scholar
  8. 8.
    B. Wagner, N. Dehnhardt, M. Schmid, B. P. Klein, L. Ruppenthal, P. Müller, M. Zugermeier, J. M. Gottfried, S. Lippert, M.-U. Halbich, A. Rahimi-Iman, and J. Heine. J. Phys. Chem. C, 2016, 120, 28363–28373.CrossRefGoogle Scholar
  9. 9.
    A. García-Fernández, I. Marcos-Cives, C. Platas-Iglesias, S. Castro-García, D. Vázquez-García, A. Fernández, and M. Sánchez-Andújar. Inorg. Chem., 2018, 57, 7655–7664.CrossRefGoogle Scholar
  10. 10.
    A. M. Goforth, M. A. Tershansy, M. D. Smith, L. Peterson, J. G. Kelley, W. J. I. DeBenedetti, and H.-C. zur Loye. J. Am. Chem. Soc., 2011, 133, 603–612.CrossRefGoogle Scholar
  11. 11.
    S. A. Adonin, M. N. Sokolov, and V. P. Fedin. Russ. J. Inorg. Chem., 2017, 62, 1789–1796.CrossRefGoogle Scholar
  12. 12.
    S. A. Adonin, I. D. Gorokh, A. S. Novikov, D. G. Samsonenko, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin. Polyhedron, 2017, 139, 282–288.CrossRefGoogle Scholar
  13. 13.
    S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, O. V. Antonova, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin. Inorg. Chim. Acta, 2018, 469, 32–37.CrossRefGoogle Scholar
  14. 14.
    G. M. Sheldrick. Acta Crystallogr. C, 2015, 71, 3–8.CrossRefGoogle Scholar
  15. 15.
    J. Lefebvre, P. Carpentier, and R. Jakubas. Acta Crystallogr. B, 1991, 47, 228–234.CrossRefGoogle Scholar
  16. 16.
    M. Hamdi, S. Karoui, A. Oueslati, S. Kamoun, and F. Hlel. J. Mol. Struct., 2018, 1154, 516–523.CrossRefGoogle Scholar
  17. 17.
    B. Kulicka, T. Lis, V. Kinzhybalo, R. Jakubas, and A. Piecha. Polyhedron, 2010, 29, 2014–2022.CrossRefGoogle Scholar
  18. 18.
    A. Piecha, A. Białońska, and R. Jakubas. J. Phys. Condens. Matter, 2008, 20, 325224.CrossRefGoogle Scholar
  19. 19.
    V. Y. Kotov, A. B. Ilyukhin, N. P. Simonenko, and S. A. Kozyukhin. Polyhedron, 2017, 137, 122–126.CrossRefGoogle Scholar
  20. 20.
    J. Matuszewski, R. Jakubas, L. Sobczyk, and T. Głowiak. Acta Crystallogr. C, 1990, 46, 1385–1388.CrossRefGoogle Scholar
  21. 21.
    P. A. Buikin, A. B. Ilyukhin, N. P. Simonenko, V. K. Laurinavichyute, and V. Y. Kotov. Polyhedron, 2018, 154, 430–435.CrossRefGoogle Scholar
  22. 22.
    S. A. Adonin, I. D. Gorokh, P. A. Abramov, P. E. Plyusnin, M. N. Sokolov, and V. P. Fedin. Dalton. T., 2016, 45, 3691–3693.CrossRefGoogle Scholar
  23. 23.
    S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin. Chem. Commun., 2016, 52, 5061–5063.CrossRefGoogle Scholar
  24. 24.
    M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar. J. Phys. Chem. A, 2009, 113, 5806–5812.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Adonin
    • 1
    • 2
    • 3
    • 4
    Email author
  • M. N. Sokolov
    • 1
    • 2
    • 5
  • V. P. Fedin
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Tobolsk Industrial InstituteTyumen Industrial UniversityTobolskRussia
  3. 3.Southern Ural State UniversityChelyabinskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Butlerov Institute of ChemistryKazan (Privolzhsky) Federal UniversityKazanRussia

Personalised recommendations