Journal of Structural Chemistry

, Volume 60, Issue 10, pp 1612–1621 | Cite as

Structure of K,Na-Exchanged Stellerite Zeolite and its Evolution under High Pressures

  • Yu. V. SeryotkinEmail author
  • V. V. Bakakin


K,Na-exchanged stellerite |K6.35Na1.53(H2O)25|[Al7.89Si28.11O72], space group F2/m, a = 13.6212(5) Å, b = 18.1589(7) Å, c = 17.8495(5) Å, β = 90.202(3)°, V = 4415.0(3) Å3, Z = 2, is studied by single-crystal X-ray diffraction under ambient conditions and upon compression to 3.5 GPa in water-containing penetrating and non-penetrating (paraffin) media. A specific property of the structure of the K,Na-exchanged form is a vacancy at the site that is occupied by Ca2+ cations in initial stellerite. The cations are distributed over six main positions with a local coordination 7–10 for K+ and 5 for Na+. The compression of K,Na-exchanged stellerite in the 4:1 ethanol:water mixture causes its additional hydration: initially, due to the occupation of partially vacant H2O sites and then, upon further compression, due to the occupation of initially vacant positions. The environment of the cations in other positions is not changed substantially in the course of overhydration. The differences in the degree of hydration of the K,Na-exchanged form under compression in penetrating and non-penetrating media are manifested in the characteristics of the compound’s compressibility.


zeolites K,Na-exchanged stellerite structure high pressure pressure-induced hydration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was performed within the State Assignment of IGM SB RAS and supported by the Russian Foundation for Basic Research (grant No. 19-05-00800).

Conflict of Interests

The authors declare that they have no conflict of interests.


  1. 1.
    G. D. Gatta, P. Lotti, and G. Tabacchi. Phys. Chem. Miner., 2018, 45, 115.CrossRefGoogle Scholar
  2. 2.
    R. Arletti, L. Leardini, G. Vezzalini, S. Quartieri, L. Gigli, M. Santoro, J. Haines, J. Rouquette, and L. Konczewicz. Phys. Chem. Chem. Phys., 2015, 17, 24262.CrossRefGoogle Scholar
  3. 3.
    R. Arletti, E. Fois, G. Tabacchi, S. Quartieri, and G. Vezzalini. Adv. Sci. Lett., 2017, 23, 5966.CrossRefGoogle Scholar
  4. 4.
    Y. Lee, J. A. Hriljac, T. Vogt, J. B. Parise, and G. Artioli. J. Am. Chem. Soc., 2001, 123, 12732.CrossRefGoogle Scholar
  5. 5.
    T. Sato, H. Takada, T. Yagi, H. Gotou, T. Okada, D. Wakabayashi, and N. Funamori Phys. Chem. Miner., 2013, 40, 3.CrossRefGoogle Scholar
  6. 6.
    C. Weigel, A. Polian, M. Kint, B. Rufflé, M. Foret, and R. Vacher. Phys. Rev. Lett., 2012, 109, 245504.CrossRefGoogle Scholar
  7. 7.
    B. A. Zakharov, Y. V. Seryotkin, N. A. Tumanov, D. Paliwoda, M. Hanfland, A. V. Kurnosov, and E. V. Boldyreva. RSC Advances, 2016, 6, 92629.CrossRefGoogle Scholar
  8. 8.
    B. A. Zakharov, S. V. Goryainov, and E. V. Boldyreva. CrystEngComm, 2016, 18, 5423.CrossRefGoogle Scholar
  9. 9.
    M. Slaughter. Amer. Mineral., 1970, 55, 387.Google Scholar
  10. 10.
    E. Passaglia and M. Sacerdoti. Bull. Mineral., 1982, 105, 338.Google Scholar
  11. 11.
    G. Cametti, M. Fisch, and T. Armbruster. Microporous Mesoporous Mater., 2017, 253, 239.CrossRefGoogle Scholar
  12. 12.
    G. Cametti and S. V. Churakov. In: ZEOLITE 2018. Book of Abstracts / Eds. W. Franus and J. Madej. Cracow, Poland, 2018, 45–46.Google Scholar
  13. 13.
    M. Sacerdoti and I. Comedi. Bull. Mineral., 1984, 107, 799.Google Scholar
  14. 14.
    E. Meneghinello, A. Alberti, G. Cruciani, M. Sagerdoti, G. Y. Mc Intyre, P. Ciambelli, and M. T. Rapacciuolo. Eur. J. Mineral., 2000, 12, 1123.CrossRefGoogle Scholar
  15. 15.
    G. Cametti, T. Armbruster, and M. Nagashima. Microporous Mesoporous Mater., 2016, 236, 71.CrossRefGoogle Scholar
  16. 16.
    R. Arletti, E. Mazzucato, and G. Vezzalini. Amer. Mineral., 2006, 91, 628.CrossRefGoogle Scholar
  17. 17.
    V. A. Drebushchak, S. N. Dementiev, and Yu. V. Seryotkin. J. Thermal Analysis and Calorimetry, 2012, 107, 1293.CrossRefGoogle Scholar
  18. 18.
    G. Cametti, M. Fisch, and T. Armbruster. Microporous Mesoporous Mater., 2017, 253, 239.CrossRefGoogle Scholar
  19. 19.
    Yu. V. Seryotkin, V. V. Bakakin, A. Yu. Likhacheva, and S. B. Raschenko. J. Struct. Chem., 2012, 53, S26.CrossRefGoogle Scholar
  20. 20.
    Y. V. Seryotkin. Microporous Mesoporous Mater., 2016, 235, 20.CrossRefGoogle Scholar
  21. 21.
    Yu. V. Seryotkin and V. V. Bakakin. J. Struct. Chem., 2018, 59, 1392.CrossRefGoogle Scholar
  22. 22.
    G. Sheldrick. Acta Cryst., 2015, C71, 3.Google Scholar
  23. 23.
    K. Koyama and Y. Takeuchi. Z. Kristallogr., 1977, 145, 216.Google Scholar
  24. 24.
    S. Quartieri and G. Vezzalini. Zeolites, 1987, 7, 163.CrossRefGoogle Scholar
  25. 25.
    R. Boehler. Rev. Sci. Instruments, 2006, 77(1151103).Google Scholar
  26. 26.
    G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman. J. Appl. Phys., 1975, 46, 2774.CrossRefGoogle Scholar
  27. 27.
    R. J. Angel and J. Gonzalez-Platas. J. Appl. Cryst., 2013, 46, 252.CrossRefGoogle Scholar
  28. 28.
    R. J. Angel, J. Gonzalez-Platas, and M. Alvaro. Z. Kristallogr., 2014, 229, 405.Google Scholar
  29. 29.
    P. Lotti, G. D. Gatta, M. Merlini, and H. P. Liermann. Z. Kristallogr., 2015, 230, 201Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations