Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 10, pp 1531–1577 | Cite as

Chalcogenide Cluster Complexes of Group Five Transition Metals: Synthetic and Structural Aspects

  • A. L. GushchinEmail author
  • A. V. Rogachev
  • Ya. S. Fomenko
  • M. N. Sokolov
Article
  • 11 Downloads

Abstract

The paper summarizes the data on discrete cluster compounds of group five transition metals with chalcogen-donor bridging ligands. Preparation methods, structural types, and some physico-chemical properties are considered.

Keywords

cluster complexes chalcogenide clusters vanadium niobium tantalum crystal structure 

List of abbreviations

CSEs

cluster skeletal electrons

HOMO

highest occupied molecular orbital

LUMO

lowest unoccupied molecular orbital

ESI-MS

electrospray ionization mass spectroscopy

EDX

energy-dispersive X-ray spectroscopy

CVD

chemical vapor deposition

CV

cyclic voltammetry

MOF

metal-organic framework

Molecules

THF

tetrahydrofuran C4H8O

THT

tetrahydrothiophene C4H8S

THTP

tetrahydrothiopyran C5H10S

dppe

1,2-bis(diphenylphosphino)ethane C26H24P2

dmpe

1,2-bis(dimethylphosphino)ethane C6H16P2

dippp

1,3-bis(diisopropylphosphino)propane CJ5H34P2

bipy

2,2′-bipyridine C10H8N2

dnbpy

4,4′-dinonyl-2,2′-bipyridine C28H44N2

dcbpy

dimethyl-2,2′-bipyridine-4,4′-dicarboxylate C14H12N2O4

phen

1,10-phenanthroline C12H8N2

Hpbz

2-(2-pyridine)benzimidazole C12H9N3

Anionic particles

acac

acetylacetonate C5H7O 2

dpm

dipivaloylmethanate C11H19O 2

dmit

4,5-dimercapto-2- thione-1,3-dithiolate C3S 5 2−

Cp

cyclopentadienyl C5H 5

Cp*

pentamethylcyclopentadienyl C5Me 5

Cp′

methylcyclopentadienyl C5H4Me

dtolf

di(4-tolyl)formamidinate C15H15N 2

edt

ethylenedithiolate C2H4S 2 2−

Cationic particles

BMIm

1-methyl-3-butylimidazolium C8H15N 2 +

PPN

bis(triphenylphosphoranylidene) ammonium C36H30NP 2 +

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

The work was supported by the grants of the Russian Foundation for Basic Research (No. 18-03-00155, 18-33-20056).

Conflict of Interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    A. L. Gushchin, Y. A. Laricheva, M. N. Sokolov, and R. Llusar. Russ. Chem. Rev., 2018, 87, 670–706.CrossRefGoogle Scholar
  2. 2.
    M. N. Sokolov and P. A. Abramov. Coord. Chem. Rev., 2012, 256, 1972–1991.CrossRefGoogle Scholar
  3. 3.
    V. E. Fedorov, Y. V. Mironov, N. G. Naumov, M. N. Sokolov, and V. P. Fedin. Russ. Chem. Rev., 2007, 76, 529–552.CrossRefGoogle Scholar
  4. 4.
    M. N. Sokolov. In: Ghalcogenide Handbook. Ch. 9.1. RSC Publishing, 2013, 475–513.Google Scholar
  5. 5.
    M. N. Sokolov, N. G. Naumov, P. P. Samoylov, and V. P. Fedin. In: Comprehensire Inorganic Chemictry / Ed.: K. P. Jan Reedijk. Elsevier: Oxford, 2013, 271–310.Google Scholar
  6. 6.
    D. Fenske. Nanoparticles, From Theory to Application / Ed. G. Schmid. Wiley, 2004.Google Scholar
  7. 7.
    R. R. Eady. Chem. Rev., 1996, 96, 3013–3030.PubMedCrossRefGoogle Scholar
  8. 8.
    D. Rehder. J. Inorg. Biochem., 2000, 80, 133–136.PubMedCrossRefGoogle Scholar
  9. 9.
    R. N. Pau. In: Biology and Biochemistry of Nitrogen Fixation / Eds. M. J. Dilworth and A. R. Glenn. Elsevier, 1991.Google Scholar
  10. 10.
    A. G. Algarra, E. Guillamón, J. Andrés, M. J. Fernández-Trujillo, E. Pedrajas, J. Á. Pino-Chamorro, R. Llusar, and M. G. Basallote. ACS Catal., 2018, 8, 7346–7350.CrossRefGoogle Scholar
  11. 11.
    S. Rangarajan and M. Mavrikakis. ACS Catal., 2017, 7, 501–509.CrossRefGoogle Scholar
  12. 12.
    S. P. Lonkar, V. V. Pillai, and S. M. Alhassan. ACS Appl. Nano Mater., 2018, 1, 3114–3123.CrossRefGoogle Scholar
  13. 13.
    H. Li, J. Liu, J. Li, Y. Hu, W. Wang, D. Yuan, Y. Wang, T. Yang, L. Li, H. Sun et al. ACS Catal., 2017, 7, 4805–4816.CrossRefGoogle Scholar
  14. 14.
    W. Song, W. Lai, Z. Chen, J. Cao, H. Wang, Y. Lian, W. Yang, and X. Jiang. ACS Appl. Nano Mater., 2018, 1, 442–454.CrossRefGoogle Scholar
  15. 15.
    B. C. Wiegand and C. M. Friend. Chem. Rev., 1992, 92, 491–504.CrossRefGoogle Scholar
  16. 16.
    A. L. Gushchin, N. Y. Shmelev, S. F. Malysheva, A. V. Artem’ev, N. A. Belogorlova, P. A. Abramov, N. B. Kompan’kov, E. Manoury, R. Poli, D. G. Sheven et al. New J. Chem., 2018, 42, 17708–17717.CrossRefGoogle Scholar
  17. 17.
    S. A. Dalmatova, A. D. Fedorenko, L. N. Mazalov, I. P. Asanov, A. Y. Ledneva, M. S. Tarasenko, A. N. Enyashin, V. I. Zaikovskii, and V. E. Fedorov. Nanoscale, 2018, 10, 10232–10240.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Y. M. Litvinova, Y. M. Gayfulin, K. A. Kovalenko, D. G. Samsonenko, J. van Leusen, I. V. Korolkov, and V. P. Fedin, Y.V. Mironov. Inorg. Chem., 2018, 57, 2072–2084.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    A. A. Krasilnikova, A. O. Solovieva, A. A. Ivanov, K. E. Trifonova, T. N. Pozmogova, A. R. Tsygankova, A. I. Smolentsev, E. I. Kretov, D. S. Sergeevichev, M. A. Shestopalov et al. Nanomed.-Nanotechnol., 2017, 13, 755–763.CrossRefGoogle Scholar
  20. 20.
    E. Cadot, M. N. Sokolov, V. P. Fedin, C. Simonnet-Jégat, S. Floquet, and F. Sécheresse. Chem. Soc. Rev., 2012, 41, 7335.PubMedCrossRefGoogle Scholar
  21. 21.
    E. D. Grayfer, E. M. Pazhetnov, M. N. Kozlova, S. B. Artemkina, and V. E. Fedorov. ChemSusChem, 2017, 10, 4805–4811.PubMedCrossRefGoogle Scholar
  22. 22.
    V. E. Fedorov, S. B. Artemkina, E. D. Grayfer, N. G. Naumov, Y. V. Mironov, A. I. Bulavchenko, V. I. Zaikovskii, I. V. Antonova, A. I. Komonov, and M. V. Medvedev. J. Mater. Chem. C, 2014, 2, 5479–5486.CrossRefGoogle Scholar
  23. 23.
    M. N. Kozlova, E. D. Grayfer, P. A. Poltarak, S. B. Artemkina, A. G. Cherkov, L. S. Kibis, A. I. Boronin, and V. E. Fedorov. Adv. Mater. Interfaces, 2017, 4, 1700999.CrossRefGoogle Scholar
  24. 24.
    M. N. Sokolov and V. P. Fedin. Coord. Chem. Rev., 2004, 248, 925–944.CrossRefGoogle Scholar
  25. 25.
    S. L. Benjamin, Y.-P. Chang, M. Huggon, W. Levason, and G. Reid. Polyhedron, 2015, 99, 230–237.CrossRefGoogle Scholar
  26. 26.
    M. N. Sokolov, A. L. Gushchin, A. V. Virovets, E. V. Peresypkina, S. G. Kozlova, and V. P. Fedin. Inorg. Chem., 2004, 43, 7966–7968.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    W. Klemm and H. G. Schnering. Naturwissenschaften, 1965, 52, 12–12.CrossRefGoogle Scholar
  28. 28.
    R. Allmann, I. Baumann, A. Kutoglu, H. Rösch, and E. Hellner. Naturwissenschaften, 1964, 51, 263–264.CrossRefGoogle Scholar
  29. 29.
    S. B. Artemkina, M. N. Kozlova, P. A. Poltarak, E. D. Grayfer, and V. E. Fedorov. J. Struct. Chem., 2018, 59, 913–921.CrossRefGoogle Scholar
  30. 30.
    M. N. Kozlova, P. A. Poltarak, S. B. Artemkina, M. R. Das, P. Sengupta, and V. E. Fedorov. Mater. Today Proc., 2017, 4, 11411–11417.CrossRefGoogle Scholar
  31. 31.
    S. C. Sendlinger, J. R. Nicholson, E. B. Lobkovsky, J. C. Huffman, D. Rehder, and G. Christou. Inorg. Chem., 1993, 32, 204–210.CrossRefGoogle Scholar
  32. 32.
    S. A. Duraj, M. T. Andras, and P. A. Kibala. Inorg. Chem., 1990, 29, 1232–1234.CrossRefGoogle Scholar
  33. 33.
    E. Tiekink, X. Yan, and C. Young. Aust. J. Chem., 1992, 45, 897.CrossRefGoogle Scholar
  34. 34.
    J. K. Money, J. C. Huffman, and G. Christou. Inorg. Chem., 1988, 27, 507–514.CrossRefGoogle Scholar
  35. 35.
    T. R. Halbert, L. L. Hutchings, R. Rhodes, and E. I. Stiefel. J. Am. Chem. Soc., 1986, 108, 6437–6438.CrossRefGoogle Scholar
  36. 36.
    M. Sokolov, A. Virovets, O. Oeckler, A. Simon, and V. Fedorov. Inorg. Chim. Acta, 2002, 331, 25–30.CrossRefGoogle Scholar
  37. 37.
    I. S. Fomenko, A. L. Gushchin, V. A. Nadolinny, N. N. Efimov, Y. A. Laricheva, and M. N. Sokolov. Eur. J. Inorg. Chem., 2018, 2018, 2965–2971.CrossRefGoogle Scholar
  38. 38.
    M. K. Taylor, D. J. Evans, and C. G. Young. Chem. Commun., 2006, 5(40), 4245.CrossRefGoogle Scholar
  39. 39.
    Hongping Zhu, Q. Liu, Xiaoying Huang, Tingbin Wen, C. Chen, and D. Wu. Inorg. Chem., 1998, 37, 2678–2686.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    A. L. Gushchin, Y. L. Laricheva, N. I. Alferova, A. V. Virovets, and M. N. Sokolov. J. Struct. Chem., 2013, 54, 752–758.CrossRefGoogle Scholar
  41. 41.
    P. L. Sinkevich, V. S. Korenev, P. A. Abramov, A. V. Rogachev, Y. A. Laricheva, M. A. Mikhailov, A. L. Gushchin, and M. N. Sokolov. Russ. J. Coord. Chem., 2014, 40, 195–199.CrossRefGoogle Scholar
  42. 42.
    D. Recatalá, A. L. Gushchin, R. Llusar, F. Galindo, K. A. Brylev, M. R. Ryzhikov, and N. Kitamura. Dalton T., 2013, 42, 12947.CrossRefGoogle Scholar
  43. 43.
    M. Moore, K. Feghali, and G. Sandro. Inorg. Chem., 1997, 36, 2191–2194.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    C. Floriani, S. Gambarotta, A. Chiesi-Villa, and C. Guastini. J. Chem. Soc., Dalton. T., 1987, 9, 2099–2103.CrossRefGoogle Scholar
  45. 45.
    A. Schweizerischer Chemiker-Verband., E. Krickemeyer, A. Sprafle, N. H. Schladerbeck, H. Bögge. Chimia; Chemie Report., Schweizerischer Chemiker-Verband, 1988.Google Scholar
  46. 46.
    O. M. Kekia and A. L. Rheingold. J. Organomet. Chem., 1997, 545–546, 277–280.CrossRefGoogle Scholar
  47. 47.
    M. Herberhold, M. Schrepfermann, and J. Darkwa. J. Organomet. Chem., 1992, 430, 61–77.CrossRefGoogle Scholar
  48. 48.
    C. M. Bolinger, T. B. Rauchfuss, and S. R. Wilson, J. Am. Chem. Soc., 1982, 104, 7313–7314.CrossRefGoogle Scholar
  49. 49.
    J. Darkwa, D. M. Giolando, C. J. Murphy, T. B. Rauchfuss, and A. Müller. In: Inorganic Syntheses. John Wiley & Sons, Ltd, 2007, 51–58.Google Scholar
  50. 50.
    C. M. Bolinger, T. B. Rauchfuss, and A. L. Rheingold. Organometallics, 1982, 1, 1551–1553.CrossRefGoogle Scholar
  51. 51.
    C. M. Bolinger, T. B. Rauchfuss, and A. L. Rheingold. J. Am. Chem. Soc., 1983, 105, 6321–6323.CrossRefGoogle Scholar
  52. 52.
    S. K. Bose, K. Geetharani, V. Ramkumar, B. Varghese, and S. Ghosh. Inorg. Chem., 2010, 49, 2881–2888.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    S. K. Bose, S. M. Mobin, and S. Ghosh. J. Organomet. Chem., 2011, 696, 3121–3126.CrossRefGoogle Scholar
  54. 54.
    D. K. Roy, S. K. Bose, K. Geetharani, K. K. Varma Chakrahari, S. M. Mobin, and S. Ghosh. Chem. Eur. J., 2012, 18, 9983–9991.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    P. Shankhari, D. K. Roy, K. Geetharani, R. S. Anju, B. Varghese, and S. Ghosh. J. Organomet. Chem., 2013, 747, 249–253.CrossRefGoogle Scholar
  56. 56.
    C. M. Bolinger, T. D. Weatherill, T. B. Rauchfuss, A. L. Rheingold, C. S. Day, and S. R. Wilson. Inorg. Chem., 1986, 25, 634–643.CrossRefGoogle Scholar
  57. 57.
    T. B. Rauchfuss, T. D. Weatherill, S. R. Wilson, and J. P. Zebrowski. J. Am. Chem. Soc., 1983, 105, 6508–6510.CrossRefGoogle Scholar
  58. 58.
    M. Herberhold, M. Kuhnlein, M. L. Ziegler, and B. Nuber. J. Organomet. Chem., 1988, 349, 131–141.CrossRefGoogle Scholar
  59. 59.
    M. Herberhold, M. Kuhnlein, M. Schrepfermann, M.L. Ziegler, and B. Nuber. J. Organomet. Chem., 1990, 398, 259–274.CrossRefGoogle Scholar
  60. 60.
    C. N. Chau, R. W. M. Wardle, and J.A. Ibers. Inorg. Chem., 1987, 26, 2740–2741.CrossRefGoogle Scholar
  61. 61.
    M. Billen, G. Hornung, G. Wolmershäuser, and F. Preuss. Z. Naturforsch. B, 2003, 58, 237–245.CrossRefGoogle Scholar
  62. 62.
    F. Preuss, M. Billen, F. Tabellion, and G. Wolmershäuser. Z. Anorg. Allg. Chem., 2000, 626, 2446–2448.CrossRefGoogle Scholar
  63. 63.
    H.-M. Wu, Y.-H. Chang, Y.-F. Tsai, K.-F. Hsu, G.-H. Lee, and H.-F. Hsu. Dalton T., 2015, 44, 4468–4473.CrossRefGoogle Scholar
  64. 64.
    J. Rijnsdorp, G. J. de Lange, and G. A. Wiegers. J. Solid State Chem., 1979, 30, 365–373.CrossRefGoogle Scholar
  65. 65.
    H. G. V. Schnering and W. Beckmann. Z. Anorg. Allg. Chem., 1966, 347, 231–239.CrossRefGoogle Scholar
  66. 66.
    H. Schäfer and W. Beckmann. Z. Anorg. Allg. Chem., 1966, 347, 225–230.CrossRefGoogle Scholar
  67. 67.
    A. V. Mishchenko, V. E. Fedorov, B. A. Kolesov, and M. A. Fedotov. Koord. Khim., 1989, 200–204.Google Scholar
  68. 68.
    M. Sokolov, A. Virovets, V. Nadolinnyi, K. Hegetschweiler, V. Fedin, N. Podberezskaya, and V. Fedorov. Inorg. Chem., 1994, 33, 3503–3509.CrossRefGoogle Scholar
  69. 69.
    M. N. Sokolov, R. Hernandez-Molina, M. R. J. Elsegood, S. L. Heath, W. Clegg, and A. G. Sykes. J. Chem. Soc. Dalton T., 1997, 0, 2059–2066.CrossRefGoogle Scholar
  70. 70.
    M. N. Sokolov, V. E. Fedorov, S. V. Tkachev, and V.P. Fedin. Russ. J. Inorg. Chem., 1996, 41, 1124–1127.Google Scholar
  71. 71.
    M. N. Sokolov, A. L. Gushchin, S. V. Tkachev, D. Y. Naumov, P. Nuñez, P. Gili, J. G. Platas, and V. P. Fedin. Inorg. Chim. Acta, 2005, 358, 2371–2383.CrossRefGoogle Scholar
  72. 72.
    A. L. Gushchin, A. V. Rogachev, I. S. Fomenko, N. F. Romashev, V. A. Nadolinny, P. A. Abramov, Y. A. Laricheva, and M. N. Sokolov. Polyhedron, 2019, 158, 458–463.CrossRefGoogle Scholar
  73. 73.
    M. N. Sokolov, A. V. Rogachev, A. V. Virovets, V. S. Korenev, M. A. Mikhailov, Y. A. Laricheva, P. L. Sinkevich, and D. A. Mainichev. Russ. J. Coord. Chem., 2014, 40, 461.CrossRefGoogle Scholar
  74. 74.
    M. N. Sokolov, A. V. Rogachev, P. A. Abramov, and V. P. Fedin. Polyhedron, 2015, 85, 727–731.CrossRefGoogle Scholar
  75. 75.
    A. V. Rogachev, A. L. Gushchin, P. A. Abramov, E. A. Kozlova, C. Vicent, D. Piryazev, A. Barlow, M. Samoc, M. G. Humphrey, R. Llusar et al. Eur. J. Inorg. Chem., 2015, 2015, 2865–2874.CrossRefGoogle Scholar
  76. 76.
    M. Sokolov, H. Imoto, T. Saito, and V. Fedorov. Z. Anorg. Allg. Chem., 1999, 625, 989–993.CrossRefGoogle Scholar
  77. 77.
    M. N. Sokolov, O. A. Geras’ko, H. Imoto, T. Saito, and V. E. Fedorov. Russ. J. Inorg. Chem., 2000, 26, 361–367.Google Scholar
  78. 78.
    M. N. Sokolov, A. L. Gushchin, S. V. Tkachev, D. Y. Naumov, P. Nuñez, P. Gili, J.G. Platas, and V. P. Fedin. Inorg. Chim. Acta, 2005, 358, 2371–2383.CrossRefGoogle Scholar
  79. 79.
    M. Sokolov, O. Geras’ko, A. Virobets, V. Fedorov, and K. Hegetschweiler. Inorg. Chim. Acta, 1998, 271, 222–227.CrossRefGoogle Scholar
  80. 80.
    M. Sokolov, O. Geras’ko, A. Majara, P. Semyannikov, V. Grankin, S. Belaya, and I. K. Igumenov. Electrochem. Soc. Proc., 1997, 97–25, 836–843.Google Scholar
  81. 81.
    M. Sokolov, H. Imoto, and T. Saito. Inorg. Chem. Commun., 2000, 3, 96–98.CrossRefGoogle Scholar
  82. 82.
    M. Sokolov, O. Geras’ko, A. Virovets, V. Fedorov, and K. Hegetschweiler. Inorg. Chim. Acta, 1998, 271, 222–227.CrossRefGoogle Scholar
  83. 83.
    Y. Yang, L. Huang, Q. Liu, and B. Kang. IUCr, Acta Crystallogr. C, 1991, 47, 2085–2087.CrossRefGoogle Scholar
  84. 84.
    C. G. Young, T. O. Kocaba, X. F. Yan, E. R. T. Tiekink, L. Wei, H. H. Murray, C. L. Coyle, and E. I. Stiefel. Inorg. Chem., 1994, 33, 6252–6260.CrossRefGoogle Scholar
  85. 85.
    M. Matsuura, T. Fujihara, M. Kakeya, T. Sugaya, and A. Nagasawa. J. Organomet. Chem., 2013, 745–746, 288–298.CrossRefGoogle Scholar
  86. 86.
    E. T. Maas and R. E. McCarley. Inorg. Chem., 1973, 12, 1096–1101.CrossRefGoogle Scholar
  87. 87.
    M. Kakeya, T. Fujihara, and A. Nagasawa. IUCr, Acta Crystallogr. E, 2006, 62, m553–m554.Google Scholar
  88. 88.
    M. Kakeya, T. Fujihara, T. Kasaya, and A. Nagasawa. Organometallics, 2006, 25, 4131–4137.CrossRefGoogle Scholar
  89. 89.
    F. A. Cotton, X. Feng, P. Guetlich, T. Kohlhaas, J. Lu, and M. Shang. Inorg. Chem., 1994, 33, 3055–3063.CrossRefGoogle Scholar
  90. 90.
    F. A. Cotton, M. P. Diebold, M. Matusz, and W. J. Roth. Inorg. Chim. Acta, 1986, 112, 147–152.CrossRefGoogle Scholar
  91. 91.
    F. A. Cotton, M. P. Diebold, and W. J. Roth. J. Am. Chem. Soc., 1987, 109, 5506–5514.CrossRefGoogle Scholar
  92. 92.
    E. Babaian-Kibala, F. A. Cotton, and M. Shang. IUCr, Acta Crystallogr. C, 1991, 47, 1617–1621.CrossRefGoogle Scholar
  93. 93.
    F. A. Cotton and M. Shang, Inorg. Chim. Acta, 1994, 227, 191–196.CrossRefGoogle Scholar
  94. 94.
    F. A. Cotton, S. A. Duraj, and W. J. Roth. IUCr, Acta Crystallogr. C, 1985, 41, 878–881.CrossRefGoogle Scholar
  95. 95.
    J. A. M. Canich and F. A. Cotton. Inorg. Chem., 1987, 26, 3473–3478.CrossRefGoogle Scholar
  96. 96.
    E. Babaian-Kibala, F. A. Cotton, and P. A. Kibala. Inorg. Chem., 1990, 29, 4002–4005.CrossRefGoogle Scholar
  97. 97.
    M. Matsuura, T. Fujihara, A. Nagasawa, and S. W. Ng. IUCr, Acta Crystallogr. E, 2012, 68, m1166–m1166.Google Scholar
  98. 98.
    F. A. Cotton, J. H. Matonie, and C. A. Murillo. J. Clust. Sci., 1996, 7, 655–662.CrossRefGoogle Scholar
  99. 99.
    F. A. Cotton, S. A. Duraj, and W. J. Roth. J. Am. Chem. Soc., 1984, 106, 4749–4751.CrossRefGoogle Scholar
  100. 100.
    M. G. B. Drew, D. A. Rice, and D. M. Williams. J. Chem. Soc., Dalton T., 1983, 10, 2251–2256.CrossRefGoogle Scholar
  101. 101.
    M. G. B. Drew, D. A. Rice, and D. M. Williams. J. Chem. Soc., Dalton T., 1985, 3, 417–421.CrossRefGoogle Scholar
  102. 102.
    A. J. Benton, M. G. B. Drew, R. J. Hobson, and D. A. Rice. J. Chem. Commun., 1981, 6, 1241–1242.CrossRefGoogle Scholar
  103. 103.
    M. Yoon, V. Young, and G. J. Miller. IUCr, Acta Crystallogr. C, 1997, 53, 1041–1043.CrossRefGoogle Scholar
  104. 104.
    E. Babaian-Kibala and F. A. Cotton. Inorg. Chim. Acta, 1991, 182, 77–82.CrossRefGoogle Scholar
  105. 105.
    Y.-P. Chang, W. Levason, M. E. Light, and G. Reid. Dalton T., 2016, 45, 16262–16274.CrossRefGoogle Scholar
  106. 106.
    W. A. Herrmann, H. Biersack, M. L. Ziegler, and B. Balbach. J. Organomet. Chem., 1981, 206, C33–C37.Google Scholar
  107. 107.
    G. Matsubayashi, K. Natsuaki, M. Nakano, H. Tamura, and R. Arakawa. Inorg. Chim. Acta, 1997, 262, 103–107.CrossRefGoogle Scholar
  108. 108.
    F. Bottomley, P. D. Boyle, S. Karslioglu, and R. C. Thompson. Organometallics, 1993, 12, 4090–4096.CrossRefGoogle Scholar
  109. 109.
    H. S. Terrence and N. A. Phíllip. Can. J. Chem., 2000, 78, 1128–1142.CrossRefGoogle Scholar
  110. 110.
    S. M. Koo, R. Bergero, A. Salifoglou, and D. Coucouvanis. Inorg. Chem., 1990, 29, 4844–4846.CrossRefGoogle Scholar
  111. 111.
    K. Tatsumi, Y. Sekiguchi, M. Sebata, A. Nakamura, R. E. Cramer, and T. Chung. Angew. Chem. Int. Ed. English, 1989, 28, 98–100.CrossRefGoogle Scholar
  112. 112.
    K. Tatsumi, Y. Sekiguchi, A. Nakamura, R. E. Cramer, and J. J. Rupp. J. Am. Chem. Soc., 1986, 108, 1358–1359.CrossRefGoogle Scholar
  113. 113.
    H. F. Franzen, W. Hönle, and H.-G. V. Schnering. Z. Anorg. Allg. Chem., 1983, 497, 13–20.CrossRefGoogle Scholar
  114. 114.
    A. Meerschaut. IUCr, Acta Crystallogr. E, 2006, 62, i131–i132.CrossRefGoogle Scholar
  115. 115.
    W. Tremel, R. Hoffmann, and E. D. Jemmis. Inorg. Chem., 1989, 28, 1213–1224.CrossRefGoogle Scholar
  116. 116.
    M. G. B. Drew, D. A. Rice, and D. M. Williams. IUCr, Acta Crystallogr. C, 1984, 40, 1547–1549.CrossRefGoogle Scholar
  117. 117.
    M. G. B. Drew, D. A. Rice, and D. M. Williams. J. Chem. Soc. Dalton T., 1984, 6, 1087.CrossRefGoogle Scholar
  118. 118.
    M. Sokolov, H. Imoto, T. Saito, and V. Fedorov. J. Chem. Soc. Dalton T., 1999, 1, 85–90.CrossRefGoogle Scholar
  119. 119.
    M. R. U. Müller and A. Isaeva. Z. Anorg. Allg. Chem., 2014, 640, 1564–1567.CrossRefGoogle Scholar
  120. 120.
    A. J. Benton, M. G. B. Drew, and D. A. Rice. J. Chem. Soc., Chem. Commun., 1981, 0, 1241–1242.CrossRefGoogle Scholar
  121. 121.
    J. L. Templeton and R. E. McCarley. Inorg. Chem., 1978, 17, 2293–2299.CrossRefGoogle Scholar
  122. 122.
    F. A. Cotton and R. C. Najjar. Inorg. Chem., 1981, 20, 2716–2719.CrossRefGoogle Scholar
  123. 123.
    F. A. Cotton, M. P. Diebold, S. A. Duraj, and W. J. Roth. Polyhedron, 1985, 4, 1479–1484.CrossRefGoogle Scholar
  124. 124.
    F. A. Cotton, L. R. Falvello, and R. C. Najjar. Inorg. Chim. Acta, 1982, 63, 107–111.CrossRefGoogle Scholar
  125. 125.
    P. F. Gilletti, V. G. Young, and T. M. Brown. Inorg. Chem., 1989, 28, 4034–4036.CrossRefGoogle Scholar
  126. 126.
    F. A. Cotton and W. J. Roth. Inorg. Chem., 1983, 22, 868–870.CrossRefGoogle Scholar
  127. 127.
    F. A. Cotton, M. P. Diebold, and W. J. Roth. Inorg. Chim. Acta, 1988, 149, 105–110.CrossRefGoogle Scholar
  128. 128.
    M. Etienne, J.-C. Hierso, P. J. Daff, B. Donnadieu, and F. Dahan. Polyhedron, 2004, 23, 379–383.CrossRefGoogle Scholar
  129. 129.
    J. A. M. Canich and F. A. Cotton. Inorg. Chim. Acta, 1989, 159, 163–168.CrossRefGoogle Scholar
  130. 130.
    G. C. Campbell, J. A. M. Canich, F. A. Cotton, S. A. Duraj, and J. F. Haw. Inorg. Chem., 1986, 25, 287–290.CrossRefGoogle Scholar
  131. 131.
    J. A. M. Canich, F. Albert Cotton, S. A. Duraj, and W. J. Roth. Polyhedron, 1986, 5, 895–898.CrossRefGoogle Scholar
  132. 132.
    F. A. Cotton and W. T. Hall. J. Am. Chem. Soc., 1979, 101, 5094–5095.CrossRefGoogle Scholar
  133. 133.
    F. A. Cotton, M. P. Diebold, and W. J. Roth. J. Am. Chem. Soc., 1986, 108, 3538–3539.CrossRefGoogle Scholar
  134. 134.
    U. Winkler, M. A. Khan, and K. M. Nicholas. Inorg. Chem. Commun., 1998, 1, 317–319.CrossRefGoogle Scholar
  135. 135.
    M. D. Fryzuk and D. H. McConville. Inorg. Chem., 1989, 28, 1613–1614.CrossRefGoogle Scholar
  136. 136.
    M. D. Fryzuk, S. A. Johnson, B. O. Patrick, A. Albinati, S. A. Mason, and T. F. Koetzle. J. Am. Chem. Soc., 2001, 123, 3960–3973.PubMedCrossRefGoogle Scholar
  137. 137.
    J. Ballmann, A. Yeo, B. A. MacKay, S. van Rijt, B. O. Patrick, and M. D. Fryzuk. Chem. Commun., 2010, 46, 8794.CrossRefGoogle Scholar
  138. 138.
    N. S. Dean, K. Folting, E. Lobkovsky, and G. Christou. Angew. Chem. Int. Ed. Engl., 1993, 32, 594–596.CrossRefGoogle Scholar
  139. 139.
    Y. Yang, Q. Liu, and D. Wu. Inorg. Chim. Acta, 1993, 208, 85–89.CrossRefGoogle Scholar
  140. 140.
    H. Zhu, Q. Liu, Y. Deng, T. Wen, C. Chen, and D. Wu. Inorg. Chim. Acta, 1999, 286, 7–13.CrossRefGoogle Scholar
  141. 141.
    F. Lin, R. L. Beddoes, D. Collison, C. D. Garner, and F. E. Mabbs. J. Chem. Soc., Chem. Commun., 1993, 496–497.Google Scholar
  142. 142.
    F. A. Cotton, M. P. Diebold, R. Llusar, and W. J. Roth. J. Chem. Soc., Chem. Commun., 1986, 16, 1276–1278.CrossRefGoogle Scholar
  143. 143.
    H. Kawaguchi and K. Tatsumi. Organometallics, 1997, 16, 307–309.CrossRefGoogle Scholar
  144. 144.
    H. Zhu, Q. Liu, C. Chen, and D. Wu. Inorg. Chim. Acta, 2000, 306, 131–136.CrossRefGoogle Scholar
  145. 145.
    A. A. Pasynskii, I. L. Eremenko, A. S. Katugin, G. S. Gasanov, E. A. Turchanova, O. G. Ellert, Y. T. Struchkov, V. E. Shklover, N. T. Berberova, A. G. Sogomonova et al. J. Organomet. Chem., 1988, 344, 195–213.CrossRefGoogle Scholar
  146. 146.
    S. A. Duraj, M. T. Andras, and B. Rihter. Polyhedron, 1989, 8, 2763–2767.CrossRefGoogle Scholar
  147. 147.
    C. E. Davies, J. C. Green, N. Kaltsoyannis, M. A. MacDonald, J. Qin, T. B. Rauchfuss, C. M. Redfern, G. H. Stringer, and M. G. Woolhouse. Inorg. Chem., 1992, 31, 3779–3791.CrossRefGoogle Scholar
  148. 148.
    C. M. Bolinger, J. Darkwa, G. Gammie, S. D. Gammon, J. W. Lyding, T. B. Rauchfuss, and S. R. Wilson. Organometallics, 1986, 5, 2386–2388.CrossRefGoogle Scholar
  149. 149.
    J. Darkwa, J. R. Lockemeyer, P. D. W. Boyd, T. B. Rauchfuss, and A. L. Rheingold. J. Am. Chem. Soc., 1988, 110, 141–149.CrossRefGoogle Scholar
  150. 150.
    I. L. Eremenko, A. A. Pasynskii, A. S. Katugin, O. G. Ellert, V. E. Shklover, and Y. T. Struchkov. Russ. Chem. Bull., 1984, 1669–1670.Google Scholar
  151. 151.
    A. A. Pasynskii, V. A. Grinberg, S. N. Konchenko, and N. A. Pushkarevskii. Russ. J. Coord. Chem., 2010, 36, 359–365.CrossRefGoogle Scholar
  152. 152.
    J. K. Money, J. C. Huffman, and G. Christou. J. Am. Chem. Soc., 1987, 109, 2210–2211.CrossRefGoogle Scholar
  153. 153.
    J. L. Seela, J. C. Huffman, and G. Christou. J. Chem. Soc., Chem. Commun., 1987, 1258–1260.Google Scholar
  154. 154.
    E. Babaian-Kibala, F. A. Cotton, and P. A. Kibala. Polyhedron, 1990, 9, 1689–1694.CrossRefGoogle Scholar
  155. 155.
    M. Gómez, C. Hernández-Prieto, A. Martín, M. Mena, and C. Santamaría. Inorg. Chem. 2016, 55, 3815–3821.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    R. S. Gall, C. T. W. Chu, and L. F. Dahl. J. Am. Chem. Soc., 1974, 96, 4019.CrossRefGoogle Scholar
  157. 157.
    B.-L. Ooi, I. Søtofte, M. F. Bendtsen, A. Munch, L. C. Nielsen, and J. Henriksen. Inorg. Chem. 2005, 44, 480–482.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    B.-L. Ooi, I. Søtofte, M. N. Sokolov, S. G. Kozlova, S. B. Rasmussen, L. C. Nielsen, and H. Jonas. Inorg. Chem., 2006, 45, 5008–5017.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    A. L. Gushchin, B.-L. Ooi, P. Harris, P. A. Abramov, and M. N. Sokolov. Z. Anorg. Allg. Chem., 2019, 645, 398–401.CrossRefGoogle Scholar
  160. 160.
    V. P. Fedin, I. V. Kalinina, A. V. Virovets, N. V. Podberezskaya, I. S. Neretin, and Y. L. Slovokhotov. Chem. Commun., 1998, 23, 2579–2580.CrossRefGoogle Scholar
  161. 161.
    V. P. Fedin, I. V. Kalinina, A. V. Virovets, and D. Fenske. Russ. Chem. Bull., 2001, 892–896.Google Scholar
  162. 162.
    M. N. Sokolov, A. L. Gushchin, P. A. Abramov, A. V. Virovets, E. V. Peresypkina, S. G. Kozlova, B. A. Kolesov, C. Vicent, and V. P. Fedin. Inorg. Chem., 2005, 44, 8756–8761.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    M. N. Sokolov, A. L. Gushchin, A. V. Virovets, E. V. Peresypkina, S. G. Kozlova, and V. P. Fedin. Inorg. Chem., 2004, 43, 7966–7968.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    A. L. Gushchin, M. N. Sokolov, P. A. Abramov, N. F. Zakharchuk, and V. P. Fedin. J. Clust. Sci., 2009, 20, 241–248.CrossRefGoogle Scholar
  165. 165.
    Y. V. Mironov, S. S. Yarovoi, D. Y. Naumov, S. G. Kozlova, V. N. Ikorsky, R. K. Kremer, A. Simon, and V. E. Fedorov. J. Phys. Chem. B, 2005, 109, 23804–23807.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    S. G. Kozlova, S. P. Gabuda, G. A. Berezovskii, D. P. Pischur, Y. V. Mironov, A. Simon, and V. E. Fedorov. J. Solid State Chem., 2008, 181, 2877–2881.CrossRefGoogle Scholar
  167. 167.
    I. L. Eremenko, A. S. Katugin, A. A. Pasynskii, Y. T. Struchkov, and V. E. Shklover. J. Organomet. Chem., 1988, 345, 79–86.CrossRefGoogle Scholar
  168. 168.
    B.-L. Ooi, I. Søtofte, M. N. Sokolov, S. G. Kozlova, S. B. Rasmussen, L. C. Nielsen, and J. Henriksen. Inorg. Chem., 2006, 45, 5008–5017.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    D. Fenske, M. A. Grissinger, M. Loos, and J. Magull. Z. Anorg. Allg. Chem., 1991, 598, 121–128.CrossRefGoogle Scholar
  170. 170.
    T. Li, Z. J. Baum, and J. E. Goldberger. Eur. J. Inorg. Chem., 2016, 2016, 28–32.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. L. Gushchin
    • 1
    • 2
    Email author
  • A. V. Rogachev
    • 1
  • Ya. S. Fomenko
    • 1
  • M. N. Sokolov
    • 1
    • 2
    • 3
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kazan Federal University, Butlerov Chemistry InstituteKazanRussia

Personalised recommendations