Journal of Structural Chemistry

, Volume 60, Issue 6, pp 1008–1018 | Cite as

Geometry, Tautomerism, and Noncovalent Interaction of Bentiromide with a Carbon-Nanotube and γ-Fe2O3 Nanoparticles: A Quantum Mechanical Study

  • R. Tanhaei
  • S. Ali BeyramabadiEmail author
  • H. Behmadi


A doctor can find out how pancreas is working using bentiromide. This drug can exist as six possible tautomers. Herein, by density functional theory (DFT) and handling the solvent effects with the polarizable continuum model (PCM), the mechanism of its tautomerization, energies, and structural parameters of the tautomers are investigated. Also, the natural bond orbital analysis (NBO) is used for exploring the frontier molecular orbitals. The most stable tautomer of bentiromide has three carbonyl groups in its structure. The amount of other tautomers is negligible in the aqueous solution. The non-covalent interactions of the most stable tautomer of bentiromide with an armchair (5,5) single-wall carbon nanotube and a γ-Fe2O3 nanoparticle are explored. In each case, three possible forms are optimized. Their most stable form is determined. The intermolecular H bonds have a critical role in the energy behavior of the interaction between bentiromide and the γ-Fe2O3 nanoparticle.


bentiromide drug DFT tautomerization γ-Fe2O3 nanoparticle carbon nanotube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge Dr. Ali Morsali (Associate Professor in Islamic Azad University, Mashhad Branch) for his kind cooperation in this research.


  1. 1.
    A. Imondi, R. Stradley, and R. Wolgemuth. Gut, 1972, 13, 726.CrossRefGoogle Scholar
  2. 2.
    K. Gyr, R. Wolf, A. Imondi, and O. Felsenfeld. Gastroenterology, 1975, 68, 488.Google Scholar
  3. 3.
    C. Arvanitakis and N. Greenberger. The Lancet, 1976, 307, 663.CrossRefGoogle Scholar
  4. 4.
    H. Harada, K. Mishima, T. Shundo, N. Yamamoto, T. Sasaki, T. Hinofuji, T. Hayashi, Y. Uchida, and I. Kimura. Am. J. Gastroenterology, 1979, 71.Google Scholar
  5. 5.
    C. Yamato and K. Kinoshita. J. Pharmacol. Exp. Ther., 1978, 206, 468.Google Scholar
  6. 6.
    C. Lang, K. Gyr, G. Stalder, and D. Gillessen. British J. Surgery, 1981, 68, 771.CrossRefGoogle Scholar
  7. 7.
    R. Chowdhury and C. Forsmark. Aliment. Pharm. Therap., 2003, 17, 733.CrossRefGoogle Scholar
  8. 8.
    F. Heshmatipour, S.A. Beyramabadi, A. Morsali, and M. M. Heravi. J. Struct. Chem., 2016, 57, 1096.CrossRefGoogle Scholar
  9. 9.
    A. Khaleghi-Rad, S. A. Beyramabadi, A. Morsali, M. Ebrahimi, and M. Khorzandi-Chenarboo. J. Struct. Chem., 2017, 58, 244.CrossRefGoogle Scholar
  10. 10.
    H. L. H. Mendoza, G. Salgado-Morán, W. Cardona-Villada, A. G. Pacheco, and D. Glossman-Mitnik. J. Serb. Chem. Soc., 2016, 77.Google Scholar
  11. 11.
    B. Eren and Y. Y. Gurkan. J. Serb. Chem. Soc., 2017, 82, 277.Google Scholar
  12. 12.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Gaussian Inc. Pittsburgh, PA, 2003.Google Scholar
  13. 13.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  14. 14.
    R. Cammi and J. Tomasi. J. Comput. Chem., 1995, 16, 1449.CrossRefGoogle Scholar
  15. 15.
    G. Zhurko and D. Zhurko. URL:, 2009.
  16. 16.
    N. Tezer and N. Karakus. J. Mol. Model., 2009, 15, 223.CrossRefGoogle Scholar
  17. 17.
    N. Özdemir, M. Dinçer, A. Çukurovalı, and O. Büyükgüngör. J. Mol. Model., 2009, 15, 1435.CrossRefGoogle Scholar
  18. 18.
    W. Ma and Y. Fang. J. Nanoparticle Res., 2006, 8, 761. 1018CrossRefGoogle Scholar
  19. 19.
    S. Farhadi, F. Mahmoudi, and J. Simpson. J. Mol. Struct., 2016, 1108, 583.CrossRefGoogle Scholar
  20. 20.
    M. Anuratha, A. Jawahar, M. Umadevi, V. Sathe, P. Vanelle, T. Terme, O. Khoumeri, V. Meenakumari, and A. M. F. Benial. Spectrochim. Acta A, 2015, 149, 558.CrossRefGoogle Scholar
  21. 21.
    Y. Wang, S. Liu, Z. Liu, J. Yang, and X. Hu. Spectrochim. Acta A, 2013, 105, 612.CrossRefGoogle Scholar
  22. 22.
    F. Gobal, R. Arab, and M. Nahali. J. Mol. Struct.: THEOCHEM, 2010, 959, 15.CrossRefGoogle Scholar
  23. 23.
    A. Magham, A. Morsali, Z. Es′haghi, S. Beyramabadi, and H. Chegini. Prog. React. Kinet. Mec., 2015, 40, 119.CrossRefGoogle Scholar
  24. 24.
    E. Mohammad-Hasani, S. A. Beyramabadi, and M. Pordel. Indian J. Chem. A, 2017, 56, 626.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations