Journal of Structural Chemistry

, Volume 60, Issue 6, pp 990–1007 | Cite as

Experimental and Theoretical Studies on Molecular Structures, Nanostructural Features, and Photophysical Properties of 5-Amino-1-Alkylimidazole-4-Carboxamide Compounds



A detailed interpretation of experimental spectral data on 1H and 13C NMR chemical shifts of compounds determined from the DFT calculation is reported. The DFT calculated values are in good agreement with the experimental results. The NBO analysis is used to investigate the stability of 1-alkylAICA. The HOMO and LUMO analysis is performed to study the charge transfer property within the molecule as well as various molecular properties viz EHOMO, ELUMO, energy gap, ionization potential, electron affinity, electronegativity, chemical potential, electrophilicity, global hardness as well global softness, and so on. The formation of a 1D nano structure of 1-alkylAICA compounds is detected by SEM studies. The UV and fluorescence study is performed to observe the variation of their photophysical properties on going from the monomer to the nanostructure. TDDFT is applied to analyze experimentally measured absorption and emission spectra. A fluorescence life-time measurement is performed for the series of 1-AlkylAICA.


1-alkylAICA DFT calculations TDDFT study nanostructural property photophysical study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks the University of Calcutta for providing the laboratory and spectroscopic facilities. The author thanks Prof. (retd.) Sibdas Ray, Dr. Kaliprasanna Dhara, and Aniruddha Ganguly of the Department of Chemistry, University of Calcutta for their support.

Supplementary material

10947_2019_1216_MOESM0_ESM.pdf (4.6 mb)
Supplementary Materials to: Experimental and Theoretical Studies on Molecular Structures, Nanostructural Features, and Photophysical Properties of 5-Amino-1-Alkylimidazole-4-Carboxamide Compounds


  1. 1.
    A. Kleeman, J. Engel, B. Kutscher, and D. Reichert. Pharmaceutical Subtances: Synthesis, Patents, Applications of the Most Relevent APIs 3 rd ed. Thieme Medical. New York, USA, 1999.Google Scholar
  2. 2.
    (a) A. M. Vijesh, A. M. Isloor, S. Telkar, S. K. Peethambar, S. Rai, and N. Isloor. Eur. J. Med. Chem., 2011, 46, 3531–3536; (b) A. K. Jain, V. Ravichandran, M. Sisodiya, and R. K. Agrawal. Asian Pac. J. Trop. Med., 2010, 3, 471–474; (c) R. Ramachandran, M. Rani, S. Senthan, Y.T. Jeong, and S. Kabilan. Eur. J. Med. Chem., 2011, 46, 1926–1934; (d) V. Padmavathi, C. P. Kumari, B. C. Venkatesh, and A. Padmaja. Eur. J. Med. Chem., 2011, 46, 5317–5326; (e) Y. Özkay, I. Isikdağ, Z. Incesu, and G. Akalin. Eur. J. Med. Chem., 2010, 45, 3320–3328; (f) X.-Q. Wang, L.-X. Liu, Y. Li, C.-J. Sun, W. Chen, L. Li, H.-B. Zhang, and X.-D. Yang. Eur. J. Med. Chem., 2013, 62, 111–121; (g) S. G. Alegaon, K. R. Alagawadi, P. V. Sonkusare, S. M. Chaudhary, D. H. Dadwe, and A. S. Shah. Bioorg. Med. Chem. Lett., 2012, 22, 1917–1921; (h) W. C. Yang, J. Li, J. Li, Q. Chen, and G. F. Yang. Bioorg. Med. Chem. Lett., 2012, 22, 1455–1458; (i) M. Gaba, D. Singh, S. Singh, V. Sharma, and P. Gaba. Eur. J. Med. Chem., 2010, 45, 2245–2249.CrossRefGoogle Scholar
  3. 3.
    S. C. Hartman and J. M. Buchanan. Annu. Rev. Biochem., 1959, 28, 365–410.CrossRefGoogle Scholar
  4. 4.
    S. Ray and A. Das. J. Mol. Str., 2015, 1089, 146–152.CrossRefGoogle Scholar
  5. 5.
    X. Wan, H. Zhang, Y. Li, and Y. Chen. New J. Chem., 2010, 34, 661–666.CrossRefGoogle Scholar
  6. 6.
    S. Toksoz, H. Acar, and M. O. Guker. Soft Matter, 2010, 6, 5839–5849.CrossRefGoogle Scholar
  7. 7.
    Y. S. Zhao, H. Fu, A. Peng, Y. Ma, and D. B. Xiao, J. Yao. Adv. Mat., 2008, 20, 2859–2876.CrossRefGoogle Scholar
  8. 8.
    (a) J.P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida. Science, 2004, 304, 1481–1483; (b) H. Liu, Y. Li, S. Xiao, H. Gan, T. Jiu, H. Li, L. Jiang, D. Zhu, D. Yu, B. Xiang, and Y. Chen. J. Am. Chem. Soc., 2003, 125, 10794–10795; (c) H. Liu, Y. Li, L. Jiang, H. Luo, S. Xiao, H. Fang, H. Li, D. Zhu, D. Yu, J. Xu, and B. Xiang. J. Am. Chem. Soc., 2002, 124, 13370–13371.CrossRefGoogle Scholar
  9. 9.
    (a) T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner. Angew. Chem. Int. Ed., 2007, 46, 5541–5544; (b) T. Naddo, Y. K. Che, W. Zhang, K. Balakrishnan, X. M. Yang, M. Yen, J. C. Zhao, J. S. Moore, and L. Zang. J. Am. Chem. Soc., 2007, 129, 6978–6979; (c) A. Ajayaghosh, S. J. George, and A. P. H. J. Schenning. Top. Curr. Chem., 2005, 258, 83–118.CrossRefGoogle Scholar
  10. 10.
    W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos. Science, 2002, 295, 2425–2427.CrossRefGoogle Scholar
  11. 11.
    A. Xie, F. Wu, W. Jiang, K. Zhang, M. Sun, and M. Wang. J. Mater. Chem. C, 2017, 5, 2175–2181.CrossRefGoogle Scholar
  12. 12.
    Z. W. Pan, Z. R. Dai, and Z. L. Wang. Science, 2001, 291, 1947–1949.CrossRefGoogle Scholar
  13. 13.
    K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. M. Zuo, and L. Zang. J. Am. Chem. Soc., 2005, 127, 10496–10497.CrossRefGoogle Scholar
  14. 14.
    K. Balakrishnan, A. Datar, T. Naddo, J. L. Huang, R. Oitker, M. Yen, J. C. Zhao, and L. Zang. J. Am. Chem. Soc., 2006, 128, 7390–7398.CrossRefGoogle Scholar
  15. 15.
    A. D. Becke. J. Chem. Phys., 1993, 98, 5648–5652.CrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1998, 37, 785–789.CrossRefGoogle Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, Revision A.02-SMP. Gaussian, Inc., Wallingford, CT, 2009.Google Scholar
  18. 18.
    E. Scrocco and J. Tomasi. Adv. Quantum Chem., 1978, 11, 115–193.CrossRefGoogle Scholar
  19. 19.
    F. J. Luque, J. M. Lopez, and M. Orozco. Theor. Chem. Acc., 2000, 103, 343–345.CrossRefGoogle Scholar
  20. 20.
    R. S. Mulliken. J. Chem. Phys., 1955, 23, 1833–1840.CrossRefGoogle Scholar
  21. 21.
    M. Szafran, A. Komasa, and E. B. Adamska. J. Mol. Struct., 2007, 827, 101–107.CrossRefGoogle Scholar
  22. 22.
    J. H. Rodriguez, D. E. Wheeler, and J. K. McCusker. J. Am. Chem. Soc., 1998, 120, 12051–12068.CrossRefGoogle Scholar
  23. 23.
    C. James, A. Amal Raj, R. Reghunathan, and I. H. Joe. J. Raman Spectrosc., 2006, 37, 1381–1392.CrossRefGoogle Scholar
  24. 24.
    J.-N. Liu, Z.-R. Chen, and S.-F. Yuan, J. Zhejiang, Univ. Sci., 2005, 6B, 584–589.Google Scholar
  25. 25.
    A. Toutchkine, V. Kraynov, and K. Hahn. J. Am. Chem. Soc., 2003, 125, 4132–4145.CrossRefGoogle Scholar
  26. 26.
    (a) M. Mille, J.-F. Lamere, F. Rodrigues, S. Fery-Forgues. Langmuir, 2008, 24, 2671–2679; (b) A. Ajayaghosh, V. K. Praveen, and C. Vijayakumar. Chem. Soc. Rev., 2008, 37, 109–122; (c) L. Zang, Y. Che, J. S. Moore. Acc. Chem. Res., 2008, 41, 1596–1608; (d) J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang, J. Han, F. Li, and C. Huang. Angew. Chem., Int. Ed., 2008, 47, 1063–1067; (e) Z. Yang and B. Xu. J. Mater. Chem., 2007, 17, 2385–2393; (f) Y. S. Zhao, W. Yang, D. Xiao, X. Sheng, X. Yang, Z. Shuai, Y. Luo, and J. Yao. Chem. Mater., 2005, 17, 6430–6435; (g) T. Akutagawa, K. Kakiuchi, T. Hasegawa, S. Noro, T. Nakamura, H. Hasegawa, S. Mashiko, and J. Becher. Angew. Chem., Int. Ed., 2005, 44, 7283–7287.CrossRefGoogle Scholar
  27. 27.
    A. Ganguly, S. Jana, S. Ghosh, S. Dalapati, and N. Guchhait. Spectrochim. Acta A, 2013, 112, 237–244.CrossRefGoogle Scholar
  28. 28.
    D. K. Maiti, S. Halder, P. Pandit, N. Chatterjee, D. D. Joarder, N. Pramanik, Y. Saima, A. Patra, and P. K. Maiti. J. Org. Chem., 2009, 74, 8086–8097.CrossRefGoogle Scholar
  29. 29.
    F. Würthner, T. E. Kaiser, and C. R. Saha-Möller. Angew. Chem. Int. Ed., 2011, 50, 3376–3410.CrossRefGoogle Scholar
  30. 30.
    M. Rocha, A. D. Santo, J. M. Arias, D. M. Gil, and A. B. Altabef. Spectrochim. Acta A, 2015, 136, 635–643.CrossRefGoogle Scholar
  31. 31.
    T. Koopmans. Physica, 1934, 1, 104–113.CrossRefGoogle Scholar
  32. 32.
    S. Liu. J. Chem. Sci., 2005, 117, 477–483.CrossRefGoogle Scholar
  33. 33.
    I. Lukovits, I. Bakó, A. Shaban, and E. Kálmán. Electrochim. Acta., 1998, 43, 131–136.CrossRefGoogle Scholar
  34. 34.
    R. G. Parr, L. V. Szentpály, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922–1924.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity College of Science, Technology and Agriculture, University of CalcuttaKolkataIndia

Personalised recommendations