Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 6, pp 932–941 | Cite as

Structural Manifestations of the Polarizability Effect in 1-Halogensilatranes According to the Dipole-Induced Dipole Mechanism

  • S. N. Tandura
  • V. V. BelyaevaEmail author
  • V. P. Baryshok
  • B. A. Gostevsky
  • V. I. Smirnov
Article
  • 7 Downloads

Abstract

A new mechanism of the dipole-induced dipole polarizability effect by the example of
1-halogensilatranes is proposed. The mechanism involves a through-space interaction between the dipole moment μ of the core and the dipole Δμ which is induced on the halogen and, in turn, induces an extra dipole ΔΔμ on the transannular bond Si ← N to make it stronger. This effect explains for the first time the previously discovered contradiction for 1-halogensilatranes where an inverse dependence in the linear correlations between the Si ← N bond length, δ15N, δ1H(CH2N) chemical shifts, and the inductive constant σ are observed. For example, the length of the Si ← N coordination bond is shorter in 1-chlorosilatranе than in 1-fluorosilatrane due to the fact that the polarizability effect is stronger than the inductive effect in the case of the Cl atom.

Keywords

1-halogensilatranes polarizability effect inductive effect induced dipole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Tandura, V. V. Belyaeva, B. A. Gostevskii, and A. I. Albanov. Russ. Chem. Bull., 2017, 66, 2269.CrossRefGoogle Scholar
  2. 2.
    C. L. Frye, G. E. Vogel, and J. A. Hall. J. Am. Chem. Soc., 1961, 83, 996.CrossRefGoogle Scholar
  3. 3.
    Ya. Ya. Baltkais, M. G. Voronkov, and G. I. Zelchans. Izv. AN Latv. SSR. Ser. Khim., 1964, 51.Google Scholar
  4. 4.
    M. G. Voronkov. Pure Appl. Chem., 1966, 13, 35.CrossRefGoogle Scholar
  5. 5.
    V. F. Sidorkin, V. A. Pestunovich, and M. G. Voronkov. Russ. Chem. Rev., 1980, 49, 414.CrossRefGoogle Scholar
  6. 6.
    M. G. Voronkov, V. M. Dyakov, and S. V. Kirpichenko. J. Organomet. Chem., 1982, 233, 1.CrossRefGoogle Scholar
  7. 7.
    J. G. Verkade. Coord. Chem. Rev., 1994, 137, 233.CrossRefGoogle Scholar
  8. 8.
    V. A. Pestunovich, V. F. Sidorkin, and M. G. Voronkov. Progress in Organosilicon Chemistry. Gordon and Breach: New York, 1995.Google Scholar
  9. 9.
    V. Pestunovich, S. Kirpichenko, and M. Voronkov. The Chemistry of Organic Silicon Compounds, Vol. 2, P. 2. Willey: Chichester, 1998, 1447–1537.CrossRefGoogle Scholar
  10. 10.
    M. G. Voronkov and V. P. Baryshok. Use of Silatranes in Medicine and Agriculture. Publishing House of SB RAS: Novosibirsk, 2005.Google Scholar
  11. 11.
    J. K. Puri, R. Singh, and V. K. Chahal. Chem. Soc. Rev., 2011, 40, 1791.CrossRefPubMedGoogle Scholar
  12. 12.
    G. Singh, G. Kaur, and J. Singh. Inorg. Chem. Commun., 2018, 88, 11.CrossRefGoogle Scholar
  13. 13.
    M. G. Voronkov, A. N. Egorochkin, and O. V. Kuznetsova. J. Organomet. Chem., 2006, 691, 159.CrossRefGoogle Scholar
  14. 14.
    A. N. Egorochkin, O. V. Kuznetsova, N. M. Khamaletdinova, and L. G. Domratcheva-Lvova. Inorg. Chim. Acta, 2018, 471, 148.CrossRefGoogle Scholar
  15. 15.
    W. B. Jensen. Chem. Rev., 1978, 78, 1.CrossRefGoogle Scholar
  16. 16.
    A. N. Egorochkin, M. G. Voronkov, O. V. Kuznetsova. Polarization Effect in Organic, Organometallic and Coordination Chemistry. Nizhegorod State Univ: Nizhnii Novgorod, 2008.Google Scholar
  17. 17.
    C. Wang, Y. Fu, L. Zhang, D. Danovich, S. Shaik, and Y. Mo. J. Comput. Chem., 2017, 39, 481.CrossRefPubMedGoogle Scholar
  18. 18.
    Z. Zhang, D. Li, W. Jiang, and Z. Wang. Advances in Physics, X, 2018, 3, 297.Google Scholar
  19. 19.
    X.-M. Zhang and F. G. Bordwell. J. Am. Chem. Soc., 1994, 116, 968.CrossRefGoogle Scholar
  20. 20.
    F. A. Carey and R. J. Sundberg. Advanced Organic Chemistry, P. A: Structure and Mechanisms. Springer Science+Business: London, N.Y., 2007, 253–388.CrossRefGoogle Scholar
  21. 21.
    O. V. Kuznetsova, A. N. Egorochkin, N. M. Khamaletdinova, and L. G. Domratcheva-Lvova. J. Organomet. Chem., 2013, 745-746, 34.CrossRefGoogle Scholar
  22. 22.
    J. L. Nadeau. Foundations of Biochemistry and Biophysics, Introduction to Experimental Biophysics: Biological Methods for Physical Scientists, USA, Boca Raton, FL: CRC Press, Taylor & Francis Group, 2017.Google Scholar
  23. 23.
    P. Atkins and de J. Paula. Physical Chemistry, 9th Ed. W. H. Freeman & Company: New York, 2009.Google Scholar
  24. 24.
    M. J. Madou. Fundamentals of Microfabrication and Nanotechnology. Vol. II. Manufacturing Techniques for Microand Nanotechnology, CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011.CrossRefGoogle Scholar
  25. 25.
    E. V. Anslyn and D. A. Dougherty. Modern Physical Organic Chemistry. University Science Books: Sausalito, California, 2006.Google Scholar
  26. 26.
    R. H. Petrucci, F. G. Herring, J. D. Madura, and C. Bissonnette. General Chemistry: Principles and Modern Applications. Pearson Canada Inc.: Toronto, Ontario, 2011.Google Scholar
  27. 27.
    P. Li and K. M. Merz. J. Chem. Theory Comput., 2014, 10, 289.CrossRefPubMedGoogle Scholar
  28. 28.
    P. Li and K. M. Merz. Chem. Rev., 2017, 117, 1564.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    A. N. Egorochkin, M. G. Voronkov, O. V. Kuznetsova, and O. V. Novikova. J. Organomet. Chem., 2008, 693, 181.CrossRefGoogle Scholar
  30. 30.
    V. A. Pestunovich, M. G. Voronkov, V. F. Sidorkin, B. Kh. Kopylovskaya, V. A. Shagun, and G. I. Zelchan. Chem. Heterocycl. Compd., 1975, 11, 918.CrossRefGoogle Scholar
  31. 31.
    Yu. L. Frolov, S. G. Shevchenko, and M. G. Voronkov. J. Organometal. Chem., 1985, 292, 159.CrossRefGoogle Scholar
  32. 32.
    S. G. Shevchenko, V. P. Elin, G. N. Dolenko, V. P. Baryshok, V. P. Feshin, Yu. L. Frolov, L. N. Mazalov, and M. G. Voronkov. Dokl. AN SSSR, 1982, 264, 373.Google Scholar
  33. 33.
    M. G. Voronkov, I. B. Mazeika, and G. I. Zelchans. Chem. Heterocycl. Compd., 1965, 1, 38.CrossRefGoogle Scholar
  34. 34.
    V. Vaisarova and V. Chvalovsky. Collect. Czech. Chem. Commun., 1968, 33, 859.CrossRefGoogle Scholar
  35. 35.
    V. A. Chetverikova, V. A. Kogan, G. I. Zelchan, M. G. Voronkov, and O. A. Osipov. Chem. Heterocycl. Compd., 1969, 5, 332.CrossRefGoogle Scholar
  36. 36.
    J. Nagy and P. Hencsei. Period. Polytechn. Chem., Eng., 1978, 22, 179.Google Scholar
  37. 37.
    P. Hencsei, Gy. Zsombok, L. Bihatsi, and J. Nagy. Period Polytechn. Chem., Eng., 1979, 23, 185.Google Scholar
  38. 38.
    J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press: 3rd ed. Burlington, 2011.Google Scholar
  39. 39.
    S. N. Tandura, M. G. Voronkov, and N. V. Alekseev. Top. Curr. Chem., 1986, 131, 99.CrossRefGoogle Scholar
  40. 40.
    J. M. Lehn. Pure Appl. Chem., 1977, 49, 857.CrossRefGoogle Scholar
  41. 41.
    J. M. Lehn. Acc. Chem. Res., 1978, 11, 49.CrossRefGoogle Scholar
  42. 42.
    R. W. Alder. Acc. Chem. Res., 1983, 16, 321.CrossRefGoogle Scholar
  43. 43.
    R. W. Alder. Chem. Rev., 1989, 89, 1215.CrossRefGoogle Scholar
  44. 44.
    C. Hoeksema, M. J. Adler, and T. M. Gilbert. J. Phys. Chem. A, 2016, 120, 9315.CrossRefPubMedGoogle Scholar
  45. 45.
    K. A. Lyssenko, A. A. Korlyukov, M. Yu. Antipin, S. P. Knyazev, V. N. Kirin, N. A. Alexeev, and E. A. Chernyshev. Mendeleev Commun., 2000, 10, 88.CrossRefGoogle Scholar
  46. 46.
    A. A. Korlyukov, K. A. Lyssenko, M. Yu. Antipin, V. N. Kirin, E. A. Chernyshev, and S. P. Knyazev, Inorg. Chem., 2002, 41, 5043.CrossRefPubMedGoogle Scholar
  47. 47.
    S. N. Tandura, V. A. Pestunovich, G. I. Zelchan, V. P. Baryshok, Yu. A. Lukina, M. S. Sorokin, and M. G. Voronkov. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30, 223.CrossRefGoogle Scholar
  48. 48.
    G. Csonka and P. Hencsei. J. Comput. Chem., 1994, 15, 385.CrossRefGoogle Scholar
  49. 49.
    J. Dillen. J. Phys. Chem. A, 2004, 108, 4971.CrossRefGoogle Scholar
  50. 50.
    V. V. Negrebetsky, S. N. Tandura, and Yu. I. Baukov. Rus. Chem. Rev., 2009, 78, 21.CrossRefGoogle Scholar
  51. 51.
    V. A. Pestunovich, B. Z. Shterenberg, E. T. Lippmaa, M. Ya. Myagi, M. A. Alla, S. N. Tandura, V. P. Baryshok, L. P. Petukhov, and M. G. Voronkov. Dokl. Phys. Chem., 1981, 258, 587.Google Scholar
  52. 52.
    T. Clark, J. S. Murray, and P. Politzer. Aust. J. Chem., 2014, 67, 451.CrossRefGoogle Scholar
  53. 53.
    T. M. Miller. Physical Constants of Organic Compounds Atomic and Molecular Polarizabilities. In: CRC Handbook of Chemistry and Physics, Internet Version 2005 / Ed. D.R. Lide, <http://www.hbcpnetbase.com>, CRC Press: Boca Raton, FL, 2005, 10.167-10.182.Google Scholar
  54. 54.
    N. M. Khamaletdinova, A. N. Egorochkin, and O. V. Kuznetsova. Rus. J. Gen. Chem., 2009, 79, 2175.CrossRefGoogle Scholar
  55. 55.
    D. W. Oxtoby, H. P. Gillis, and L. J. Butler. Principles of Modern Chemistry, 8th Ed. / Cengage Learning, Chap. 3.2, The Periodic Table, 2015.Google Scholar
  56. 56.
    C. E. Housecroft and A. G. Sharpe. Inorg. Chem., 2005.Google Scholar
  57. 57.
    D. Fahlman. Materials Chemistry. Springer: London, N.Y., 2011, 16.CrossRefGoogle Scholar
  58. 58.
    G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, and G. Terraneo. Chem. Rev., 2016, 116, 2478.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    P. Politzer, J. S. Murray, and T. Clark. Top. Curr. Chem., 2015, 358, 19.CrossRefPubMedGoogle Scholar
  60. 60.
    G. Cavallo, P. Metrangolo, T. Pilati, and G. Resnati. Top. Curr. Chem., 2015, 358, 1.PubMedGoogle Scholar
  61. 61.
    M. H. Kolar and P. Hobza. Chem. Rev., 2016, 116, 5155.CrossRefPubMedGoogle Scholar
  62. 62.
    F. Bi, J. Gao, L. Wang, L. Du, B. Song, and C. Liu. Chem. Phys., 2013, 426, 16.CrossRefGoogle Scholar
  63. 63.
    E. V. Bartashevich and V. G. Tsirelson. Russ. Chem. Rev., 2014, 83, 1181.CrossRefGoogle Scholar
  64. 64.
    X. Ding, M. Tuikka, and M. Haukka. Recent Advances in Crystallography / Ed. J. B. Benedict. In: Tech, New York, 2012, 143–168.Google Scholar
  65. 65.
    A. Kovacs and Z. Varga. Coord. Chem. Rev., 2006, 250, 710.CrossRefGoogle Scholar
  66. 66.
    M. Erdelyi. Chem. Soc. Rev., 2012, 41, 3547.CrossRefPubMedGoogle Scholar
  67. 67.
    P. Metrangolo, G. Resnati, T. Pilati, and S. Biella. Halogen Bonding. Fundamentals and Applications. In: Structure and Bonding. 2008, 126, 105–136.CrossRefGoogle Scholar
  68. 68.
    E. V. Bartashevich and V. G. Tsirelson. Phys.Chem. Chem. Phys., 2013, 15, 2530.CrossRefPubMedGoogle Scholar
  69. 69.
    P. Politzer, J. S. Murray, and T. Clark. Phys. Chem. Chem. Phys., 2013, 15, 11178.CrossRefPubMedGoogle Scholar
  70. 70.
    A.-C. C. Carlsson, A. X. Veiga, and M. Erdelyi. Top. Curr. Chem., 2015, 359, 49.CrossRefPubMedGoogle Scholar
  71. 71.
    V. A. Pestunovich, B. Z. Shterenberg, L. P. Petukhov, V. I. Rakhlin, V. P. Baryshok, R. G. Mirskov, and M. G. Voronkov. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 1790.CrossRefGoogle Scholar
  72. 72.
    E. V. Anslyn, and D. A. Dougherty. Modern Physical Organic Chemistry. University Science Books, 2006.Google Scholar
  73. 73.
    W. J. Hehre, C. F. Pau, A. D. Headley, R. W. Taft, and R. D. Topsom. J. Am. Chem. Soc., 1986, 108, 1711.CrossRefGoogle Scholar
  74. 74.
    L. Parkanyi, P. Hencsei, L. Bihatsi, and T. Muller. J. Organomet. Chem., 1984, 269, 1.CrossRefGoogle Scholar
  75. 75.
    A. A. Korlyukov, M. Yu. Antipin, M. I. Buzin, E. A. Zel′bst, Yu. I. Bolgova, O. M. Trofimova, and M. G. Voronkov. J. Struct. Chem., 2009, 50, 873.CrossRefGoogle Scholar
  76. 76.
    G. Forgacs, M. Kolonits, and I. Hargittai. Struct. Chem., 1990, 1, 245.CrossRefGoogle Scholar
  77. 77.
    A. A. Kemme, Ya. Ya. Bleidelis, V. A. Pestunovich, V. P. Baryshok, and M. G. Voronkov. Dokl. AN SSSR, 1978, 243, 688.Google Scholar
  78. 78.
    P. Hencsei and L. Parkanyi. The Molecular Structure of Silatranes. In: Reviews on Silicon, Germanium, Tin and Lead Compounds / Ed. M. Gielen. Scient. Pub. Div., Freund Pub. House: Tel-Aviv; 1985, VIII(2-3), 191–218.Google Scholar
  79. 79.
    M. G. Voronkov, L. P. Petukhov, V. I. Rakhlin, V. P. Baryshok, B. Z. Shterenberg, R. G. Mirskov, and V. A. Pestunovich. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30, 1991.CrossRefGoogle Scholar
  80. 80.
    J. C. Zhu, X. Y. Sun, H. Y. Wu, L. J. Jiang, B. Q. Chen, and G. L. Wu. Acta Chim. Sinica, 1985, 43, 1151.Google Scholar
  81. 81.
    M. G. Voronkov and V. V. Belyaeva. Zh. Obshch. Khim., 2002, 66, 2012.Google Scholar
  82. 82.
    R. C. Gray and D. M. Hercules. Inorg. Chem., 1977, 16, 1426.CrossRefGoogle Scholar
  83. 83.
    G. I. Csonka and P. Hencsei. J. Comp. Chem., 1996, 17, 767.CrossRefGoogle Scholar
  84. 84.
    D. H. Kim and M. J. Lee. Bull. Korean Chem. Soc., 1997, 18, 981.Google Scholar
  85. 85.
    G. Chung, O. Kwon, and Y. Kwon. Inorg. Chem., 1999, 38, 197.CrossRefGoogle Scholar
  86. 86.
    S. Belyakov, L. Ignatovich, and E. Lukevics. J. Organomet. Chem., 1999, 577, 205.CrossRefGoogle Scholar
  87. 87.
    A. Greenberg and G. Wu. Struct. Chem., 1990, 1, 79.CrossRefGoogle Scholar
  88. 88.
    G. I. Csonka and P. Hencsei. J. Comput. Chem., 1994, 415, 385.CrossRefGoogle Scholar
  89. 89.
    M. W. Schmidt, T. L. Windus, and M. S. Gordon. J. Am. Chem. Soc., 1995, 117, 7480.CrossRefGoogle Scholar
  90. 90.
    G. I. Csonka and P. Hencsei. J. Mol. Struct. (Theochem.), 1996, 362, 199.CrossRefGoogle Scholar
  91. 91.
    E. Lukevics and O. A. Pudova. Chem. Heterocycl. Compd., 1996, 32, 1381.CrossRefGoogle Scholar
  92. 92.
    V. F. Sidorkin, V. A. Shagun, and V. A. Pestunovich. Russ. Chem. Bull., 1999, 48, 1049.CrossRefGoogle Scholar
  93. 93.
    R. Eujen, E. Petrauskas, A. Roth, and D. J. Brauer. J. Organomet. Chem., 2000, 613, 86.CrossRefGoogle Scholar
  94. 94.
    J. H. Iwamiya and G. E. Maciel. J. Am. Chem. Soc., 1993, 115, 6835.CrossRefGoogle Scholar
  95. 95.
    V. A. Pestunovich, S. N. Tandura, B. Z. Shterenberg, V. P. Baryshok, and M. G. Voronkov. Dokl. Akad. Nauk SSSR, 1980, 253, 400.Google Scholar
  96. 96.
    E. F. Belogolova and V. F. Sidorkin. J. Phys. Chem. A, 2013, 117, 5365.CrossRefPubMedGoogle Scholar
  97. 97.
    V. A. Pestunovich, S. N. Tandura, B. Z. Shterenberg, V. P. Baryshok, and M. G. Voronkov. Russ. Chem. Bull., 1979, 1066.Google Scholar
  98. 98.
    V. F. Sidorkin, V. A. Pestunovich, and M. G. Voronkov. Dokl. Phys. Chem., 1977, 235, 850.Google Scholar
  99. 99.
    E. L. Kupche and E. Lukevits. Chem. Heterocycl. Compd., 1989, 25, 586.CrossRefGoogle Scholar
  100. 100.
    P. Hencsei. Struct. Chem., 1991, 2, 21.CrossRefGoogle Scholar
  101. 101.
    M. G. Voronkov, V. M. Dyakov, V. P. Baryshok, S. N. Tandura, and V. F. Mironov. Zh. Obschei Khim., 1975, 45, 1902.Google Scholar
  102. 102.
    M. G. Voronkov, V. P. Baryshok, L. P. Petukhov, V. I. Rakhlin, R. G. Mirskov, and V. A. Pestunovich. J. Organomet. Chem., 1988, 358, 39.CrossRefGoogle Scholar
  103. 103.
    M. G. Voronkov, V. P. Baryshok, and N. F. Lazareva. Rus. Chem. Bull., 1996, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. N. Tandura
    • 1
  • V. V. Belyaeva
    • 2
    Email author
  • V. P. Baryshok
    • 3
  • B. A. Gostevsky
    • 2
  • V. I. Smirnov
    • 2
  1. 1.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Favorsky Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations