Journal of Structural Chemistry

, Volume 60, Issue 6, pp 890–897 | Cite as

Synthesis, Characterization, Crystal Structure, and DFT Study of 4-Bromo-2-(4,6-Dichloro-Phenylimino)-Phenol

  • A. SoltaniEmail author
  • R. Mashkoor
  • A. D. Khalaji
  • S. G. Raz
  • S. H. Ghoran
  • M. Dusek
  • K. Fejfarova
  • Y. Kanani


The experimental crystal structure of a Schiff base compound 4-bromo-2-(4,6-dichloro-phenylimino)-phenol 1 is determined by single crystal X-ray diffraction and also characterized by FT-IR and 1H NMR spectroscopy. The electronic structure in the gas phase is studied by density functional theory (DFT) calculations.The theoretical results have good agreement with the data obtained from the crystallographic analysis. In addition, theoretical configurations which refer to the title compound are relaxed and studied in terms of the combined analysis of HOMO-LUMO energy gap, total density of states (DOS), partial density of state (PDOS), overlap population density of state (OPDOS), molecular electrostatic potential (MEP), NMR spectra, and harmonic vibrational frequencies.


Schiff base single crystal DFT calculation electronic structure NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran. We also thank the Islamic Azad University (Gorgan Branch) as well as the Golestan University (GU) for partial support of this work.


  1. 1.
    A. Dehno Khalaji, A. Najafi Chermahini, K. Fejfarova, and M. Dusek. Struct. Chem., 2010, 21, 153–157.CrossRefGoogle Scholar
  2. 2.
    A. Dehno Khalaji, M. Weil, G. Grivani, and S. Mali Akerdi. Monatsh Chem., 2010, 141, 539–543.CrossRefGoogle Scholar
  3. 3.
    M. Morshedi, M. Amirnasr, S. Triki, and A. Dehno Khalaji. J. Chem. Crystallogr., 2011, 41, 39–43.CrossRefGoogle Scholar
  4. 4.
    A. Dehno Khalaji and H. Stoekli-Evans. Polyhedron, 2009, 28, 3769–3773.CrossRefGoogle Scholar
  5. 5.
    A. Dehno Khalaji, M. Weil, H. Hadadzadeh, and M. Daryanavard. Inorg. Chim. Acta, 2009, 362, 4837–4842.CrossRefGoogle Scholar
  6. 6.
    A. Dehno Khalaji, H. Hadadzadeh, K. Fejfarova, and M. Dusek. Polyhedron, 2010, 29, 807–812.CrossRefGoogle Scholar
  7. 7.
    B. Kumar Paul and and N. Guchhait. Chem. Phys., 2013, 412, 58–67.CrossRefGoogle Scholar
  8. 8.
    G. Bator, L. Sobczyk, W. Sawka-Dobrowolska, J. Wuttke, A. Pawlukojc, E. Grech, and J. Nowicka-Scheibe. Chem. Phys., 2013, 410, 55–65.CrossRefGoogle Scholar
  9. 9.
    M. Malecka, S. Mebs, and A. Jozwiak. Chem. Phys., 2012, 407, 20–28.CrossRefGoogle Scholar
  10. 10.
    E. Fereyduni, M. K. Rofouei, M. Kamaee, S. Ramalingam, and S. M. Sharifkhani. Spectrochim. Acta A, 2012, 90, 193–201.CrossRefGoogle Scholar
  11. 11.
    A. Dehno Khalaji, S. Mehrani, V. Eigner, and M. Dusek. J. Mol. Struct., 2013, 1047, 87–94.CrossRefGoogle Scholar
  12. 12.
    A. Dehno Khalaji, M. Nikookar, K. Fejfarova, and M. Dusek. J. Mol. Struct., 2014, 1071, 6–10.CrossRefGoogle Scholar
  13. 13.
    A. Soltani, S. Ghafouri Raz, M. Ramezani Taghartapeh, A. Varasteh Moradi, and R. Zafar Mehrabian. Comput. Mater. Sci., 2013, 79, 795–803.CrossRefGoogle Scholar
  14. 14.
    M. Kia, M. Golzar, K. Mahjoub, and A. Soltani. Superlattic. Microstruct., 2013, 62, 251–259.CrossRefGoogle Scholar
  15. 15.
    M. C. Burla, M. Camalli, B. Carrozzini, G. Cascarano, C. Giacovazzo, G. Polidori, and R. Spagna. J. Appl. Cryst., 2013, 36, 1103.CrossRefGoogle Scholar
  16. 16.
    V. Petricek, M. Dusek, and L. Palatinus. Jana 2006. Structure Determination Software Programs. Institute of Physics, 6Praha, Czech Republic, 2008.Google Scholar
  17. 17.
    L. J. Farrugia. J. Appl. Cryst., 1997, 30, 656.CrossRefGoogle Scholar
  18. 18.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople. Gaussian 98, Gaussian Inc., Pittsburgh, PA, 1998.Google Scholar
  19. 19.
    A. Soltani, A. Varasteh Moradi, M. Bahari, A. Masoodi, and S. Shojaee. Physica B, 2013, 430, 20–26.CrossRefGoogle Scholar
  20. 20.
    I. Novak and B. Kovac. Chem. Phys. Lett., 2011, 510, 57–59.CrossRefGoogle Scholar
  21. 21.
    J. M. Oliva and A. Vegas. Chem. Phys. Lett., 2012, 533, 50–55.CrossRefGoogle Scholar
  22. 22.
    A. Soltani, M. T. Baei, E. Tazikeh Lemeski, and M. Shahini. Superlattic. Microstruct., 2014, 76, 315–325.CrossRefGoogle Scholar
  23. 23.
    N. Saikia and R. C. Deka. Computat. Theo. Chem., 2011, 964, 257–261.CrossRefGoogle Scholar
  24. 24.
    T. Koopmans. Physica, 1933, 1, 104.CrossRefGoogle Scholar
  25. 25.
    R. G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989.Google Scholar
  26. 26.
    R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512.CrossRefGoogle Scholar
  27. 27.
    N. Gunaya, E. Tarcana, D. Avcib, K. Esmera, and Y. Atalay. Z. Naturforsch., 2009, 64a, 745–752.Google Scholar
  28. 28.
    A. Dehno Khalaji and F. Malekan. J. Clust. Sci., 2014, 25, 517–521.CrossRefGoogle Scholar
  29. 29.
    S. Sudha, N. Sundaraganesan, M. Kurt, M. Cinar, and M. Karabacak. J. Mol. Struct., 2011, 985, 148–156.CrossRefGoogle Scholar
  30. 30.
    M. Karabacak and M. Cinar. Spectrochim. Acta Part A, 2012, 86, 590–599.CrossRefGoogle Scholar
  31. 31.
    S. Subashchandrabose, A. R. Krishnan, H. Saleem, V. Thanikachalam, G. Manikandan, and Y. Erdogdu. J. Mol. Struct., 2010, 981, 59–70.CrossRefGoogle Scholar
  32. 32.
    D. F. V. Lewis, C. Ioannides, and D. V. Parke. Xenobiotica, 1994, 24, 401.CrossRefGoogle Scholar
  33. 33.
    S. Sebastian, S. Sylvestre, N. Sundaraganesan, M. Amalanathan, S. Ayyapan, K. Oudayakumar, and B. Karthikeyan. Spectrochim. Acta A, 2013, 107, 167–178.CrossRefGoogle Scholar
  34. 34.
    M. Karabacak and M. Cinar. Spectrochim. Acta Part A, 2012, 86, 590–599.CrossRefGoogle Scholar
  35. 35.
    A. Soltani, F. Ghari, A. Dehno Khalaji, E. Tazikeh Lemeski, K. Fejfarova, M. Dusek, and M. Shikhi. Spectrochim. Acta A, 2015, 139, 271–278.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. Soltani
    • 1
    • 2
    Email author
  • R. Mashkoor
    • 2
  • A. D. Khalaji
    • 3
  • S. G. Raz
    • 2
  • S. H. Ghoran
    • 4
  • M. Dusek
    • 5
  • K. Fejfarova
    • 5
  • Y. Kanani
    • 2
  1. 1.Golestan Rheumatology Research CenterGolestan University of Medical SciencesGorganIran
  2. 2.Young Researchers and Elite Club, Gorgan BranchIslamic Azad UniversityGorganIran
  3. 3.Department of Chemistry, Faculty of ScienceGolestan UniversityGorganIran
  4. 4.Young Researchers and Elite Club, Maragheh BranchIslamic Azad UniversityMaraghehIran
  5. 5.Institute of Physics of the ASCR, v.v.i.PragueCzech Republic

Personalised recommendations