Journal of Structural Chemistry

, Volume 60, Issue 5, pp 845–853 | Cite as

Synthesis and Antibacterial Activities of Novel Hg(II) and Zn(II) Complexes of Bis(Thiosemicarbazone) Acenaphthenequinone Loaded to MWCNTs

  • N. Abdolhi
  • M. Aghaei
  • A. SoltaniEmail author
  • H. Mighani
  • E. A. Ghaemi
  • M. B. Javan
  • A. D. Khalaji
  • S. Sharbati
  • M. Shafipour
  • H. Balakheyli


This paper describes a series of new polyamides containing bis(thiosemicarbazone) acenaphthenequinone (PA), bis(thiosemicarbazone) acenaphthenequinone zinc (Z-PA), and bis(thiosemicarbazone) acenaphthenequinone mercury (H-PA) complexes loaded onto MWCNTs synthesized via a chemical precipitation method in methanol followed by antimicrobial activity studies on the novel functionalized MWCNTs complexes. These complexes are characterized by FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antibacterial activity of free PA, Z-PA, and H-PA complexes loaded onto MWCNTs are studied against gram-positive and gram-negative bacteria. The results indicate that the HPA/MWCNT complex is the most effective growth inhibitor against Listeria monocytogenes and Pseudomonas aeruginosa, exhibiting the potential for the use as an antibacterial agent.


MWCNT bis(thiosemicarbazone) functionalization thermal stability antibacterial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at the Golestan University of Medical Sciences and the Golestan University, Gorgan, Golestan province, Iran.


  1. 1.
    N. M. H. Salem, A. R. Rashad, L. El Sayed, S. Foro, W. Haase, and M. F. Iskander. Inorg. Chim. Acta., 2015, 432, 231.CrossRefGoogle Scholar
  2. 2.
    B. Shaabani, A. A. Khandar, F. Mahmoudi, M. A. Maestro, S. S. Balula, and L. Cunha-Silva. Polyhedron, 2013, 57, 118.CrossRefGoogle Scholar
  3. 3.
    P. Anitha, N. Chitrapriya, Y. J. Jang, and P. Viswanathamurthi. J. Photochem. Photobiol., A, 2013, 129, 17.CrossRefGoogle Scholar
  4. 4.
    J. Benítez, L. Becco, I. Correia, S. Leal, H. Guiset, J. Costa Pessoa, J. Lorenzo, S. Tanco, P. Escobar, V. Moreno, B. Garat, and D. Gambino. J. Inorg. Biochem., 2011, 105, 303.CrossRefGoogle Scholar
  5. 5.
    J. Benítez, L. Guggeri, I. Tomaz, G. Arrambide, M. Navarro, J. Costa Pessoa, B. Garat, and D. Gambino. J. Inorg. Biochem., 2009, 103, 609.CrossRefGoogle Scholar
  6. 6.
    S. M. H. Ali, Y.-K. Yan, P. P. F. Lee, K. Z. X. Khong, M. A. Sk, K. H. Lim, B. Klejevskaja, and R. Vilar. Dalton Trans., 2014, 43, 1449.CrossRefGoogle Scholar
  7. 7.
    Y. C. Xing. J. Phys. Chem. B, 2004, 108, 19255–19259.CrossRefGoogle Scholar
  8. 8.
    C. Wang, M. Waje, X. Wang, J. M. Tang, C. R. Haddon, and Y. Yan. Nano Lett., 2004, 4, 345.CrossRefGoogle Scholar
  9. 9.
    M. Carmo, V. A. Paganin, J. M. Rosolen, and E. R. Gonzalez. J. Power Sources, 2005, 142, 169.CrossRefGoogle Scholar
  10. 10.
    S. Iijima. Nature, 1991, 354, 56.CrossRefGoogle Scholar
  11. 11.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer. Science, 2002, 297, 787.CrossRefGoogle Scholar
  12. 12.
    G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin. Nature, 1998, 393, 346.CrossRefGoogle Scholar
  13. 13.
    Y. Saito and S. Uemura. Carbon, 38, 2000, 169.CrossRefGoogle Scholar
  14. 14.
    E. Miyako, H. Nagata, K. Hirano, Y. Makita, K. Nakayama, and T. Hirotsu. Nanotechnology, 2007, 18, 475103.CrossRefGoogle Scholar
  15. 15.
    C. S. Zhang, Q. Q. Ni, S. Y. Fu, and K. Kurashiki. Compos. Sci. Technol., 2007, 67, 2973–2980.CrossRefGoogle Scholar
  16. 16.
    S. Gholizadeh, F. Moztarzadeh, N. Haghighipour, L. Ghazizadeh, F. Baghbani, M. A. Shokrgozar, and Z. Allahyari. Int. J. Biol. Macromol., 2017, 97, 365–372.CrossRefGoogle Scholar
  17. 17.
    B. Czech. Chem. Environ. Res., 2017, 155, 1–6.Google Scholar
  18. 18.
    B. Erdelyi, A. Orinak, R. Orinaková, J. Lorincik, M. Jerigová, D. Velic, M. Micusík, M. Omastová, R. M. Smith, and V. Girman. Appl. Surf. Sci., 2017, 396, 574–581.CrossRefGoogle Scholar
  19. 19.
    X. Li, Y. Fan, and F. Watari. Biomed. Mater., 2010, 5(2), 22001.CrossRefGoogle Scholar
  20. 20.
    G. G. Wildgoose, C. E. Banks, and R. G. Compton. Small, 2006, 2(2), 182–193.CrossRefGoogle Scholar
  21. 21.
    R. Ghorbani-Vaghei, S. Hemmati, M. Hashemi, and H. Veisi. C. R. Chim., 2015, 18, 636–643.CrossRefGoogle Scholar
  22. 22.
    M. Morsy, M. Helal, M. El-Okr, and M. Ibrahim. Pharma Chem., 2015, 7(10), 139–144.Google Scholar
  23. 23.
    E. C. Dandley, A. J. Taylor, K. S. Duke, M. D. Ihrie, K. A. Shipkowski, G. N. Parsons, and J. C. Bonner. Part. Fibre Toxicol., 2016, 13(1), 1–17.Google Scholar
  24. 24.
    M. M. Hania. E. J. Chem., 2009, 6(S1), S508–S514.CrossRefGoogle Scholar
  25. 25.
    E. Hariri, A. Mahboubi, M. Fathi, P. Rahmani, K. Haj Mohammad, E. Tehrani, M. Babaeian, V. Mashayekhi, and F. Kobarfard. Iran. J. Pharm. Res., 2016, 15, 29–35.Google Scholar
  26. 26.
    A. A. Jadhav, V. P. Dhanwe, and P. K. Khanna. Polyhedron, 2017, 123, 99–110.CrossRefGoogle Scholar
  27. 27.
    N. Nami, H. Mighani, N. Kia, and H. Sadatfaraji. Chem. Sci. Trans., 2013, 2(S1), S267–S275.Google Scholar
  28. 28.
    F. Abbaszadeh, O. Moradi, M. Norouzi, and O. Sabzevari. J. Ind. Eng. Chem., 2014, 20, 2895–2900.CrossRefGoogle Scholar
  29. 29.
    R. Karthik, R. Sasikumar, S.-M. Chen, J. Vinoth Kumar, A. Elangovan, V. Muthuraj, P. Muthukrishnan, F. M. A. Al-Hemaid, M. Ajmal Ali, and M. S. Elshikh. J. Colloid Interface Sci., 2017, 487, 289–296.CrossRefGoogle Scholar
  30. 30.
    A. Nostro, M. Germano, P. V. Angelo, A. Marino, and M. A. Cannatelli. Lett. Appl. Microbiol., 2000, 30, 379/380.CrossRefGoogle Scholar
  31. 31.
    B. Scheibe, E. Borowiak-Palen, and R. J. Kalenczuk. Mater. Charact., 2010, 61, 185–191.CrossRefGoogle Scholar
  32. 32.
    N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu. Appl. Phys. Lett., 2004, 85(19), 4463–4465.CrossRefGoogle Scholar
  33. 33.
    J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier. Carbon, 49, 2011, 2581–2602.CrossRefGoogle Scholar
  34. 34.
    M. S. Dresselhaus, J. Ado, M. Hofman, G. Dresselhaus, and R. Saito. Nano Lett., 2010, 10(3), 751.CrossRefGoogle Scholar
  35. 35.
    F. Soyekwo, Q. Zhang, R. Gao, Y. Qu, R. Lv, M. Chen, A. Zhu, and Q. Liu. J. Mater. Chem. A, 2017, 5, 583–592.CrossRefGoogle Scholar
  36. 36.
    N. Abdolhi, A. Soltani, H. KhandanFadafan, V. Erfani-Moghadam, A. DehnoKhalaji, and H. Balakheyli. Nano-Struct. Nano-Objects, 2017, 12, 182–187.CrossRefGoogle Scholar
  37. 37.
    E. Y. Malikov, M. B. Muradov, O. H. Akperov, G. M. Eyvazova, R. Puskás, D. Madarász, L. Nagy, Á. Kukovecz, and Z. Kónya. Physica E, 2014, 61, 129–134.CrossRefGoogle Scholar
  38. 38.
    S. A. Shokry, A. K. El Morsi, M. S. Sabaa, R. R. Mohamed, and H. E. El Sorogy. Egypt. J. Pet., 2015, 24, 145–154.CrossRefGoogle Scholar
  39. 39.
    H. Yun, J. D. Kim, H. C. Choi, and C. W. Lee. Bull. Korean Chem. Soc., 2013, 34, 3261–3264.CrossRefGoogle Scholar
  40. 40.
    Y.-C. Hsieh, Y.-C. Chou, C.-P. Lin, T.-F. Hsieh, and C.-M. Shu. Aerosol Air Qual. Res., 2010, 10, 212–218.CrossRefGoogle Scholar
  41. 41.
    S. A. Aleaghil, E. Fattahy, B. Baei, M. Saghali, H. Bagheri, N. Javid, and E. A. Ghaemi. Int. J. Adv. Biotechnol. Res., 2016, 7, 1569–1575.Google Scholar
  42. 42.
    A. Reiss, S. Florea, T. Caproiu, and N. Stanica. Turk. J. Chem., 2009, 33, 775–783.Google Scholar
  43. 43.
    S. Chandra, S. Parmar, and Y. Kumar. Bioinorg. Chem. Appl., 2009, 1–6.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. Abdolhi
    • 1
  • M. Aghaei
    • 1
  • A. Soltani
    • 1
    Email author
  • H. Mighani
    • 2
  • E. A. Ghaemi
    • 3
  • M. B. Javan
    • 4
  • A. D. Khalaji
    • 2
  • S. Sharbati
    • 1
  • M. Shafipour
    • 3
  • H. Balakheyli
    • 1
  1. 1.Golestan Rheumatology Research CenterGolestan University of Medical ScienceGorganIran
  2. 2.Department of Chemistry, Faculty of ScienceGolestan UniversityGorganIran
  3. 3.Department of MicrobiologyGolestan University of Medical SciencesGorganIran
  4. 4.Department of Physics, Faculty of ScienceGolestan UniversityGorganIran

Personalised recommendations