Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 5, pp 830–837 | Cite as

A Comparative Study on the Zinc Metatitanate Microstructure by Ball Milling and Solvothermal Approaches

  • L. Al-HajjiEmail author
Article
  • 3 Downloads

Abstract

The microstructure of an a-TiO2:ZnO system obtained by two different synthesis techniques is investigated. Equimolar a-TiO2:ZnO is subjected to high-energy planetary ball milling as a dry mechanical technique and a solvothermal method as a wet technique for preparing zinc titanates. The investigation is performed by XRD and HR-TEM. The mechanical route results in the formation of ZnTiO3 as a major product accompanied by Zn2Ti3O8 as a minor one. The solvothermal route results in the formation of Zn2Ti3O8 accompanied by traces of zincite. The thermal stability of later zinc titanate is explored under different temperatures and results in a homogeneous amorphous nanocrystalline phase transformation without a compositional change.

Keywords

heterogeneous mechanical ZnO TiO2 nanocomposite XRD HR-TEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Manik and S. K. Pradhan. Physica E, 2006, 33(1), 69–76.CrossRefGoogle Scholar
  2. 2.
    H. T. Kim, J. D. Byun, and Y. Kim. Mater. Res. Bull., 1998, 33(6), 963–973.CrossRefGoogle Scholar
  3. 3.
    C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, and V. Ananthi. Mater. Res. Bull., 2011, 46, 1586–1592.CrossRefGoogle Scholar
  4. 4.
    Z. Liu, D. Zhou, S. Gong, and H. Li. J. Alloy Compd., 2009, 475(1), 840–845.CrossRefGoogle Scholar
  5. 5.
    S. Moradi, P. Aberoomand-Azar, S. Raeis-Farshid, S. Abedini-Khorrami, and M. Hadi Givianrad. J. Saudi Chem. Soc., 2016, 20(4), 373–378.CrossRefGoogle Scholar
  6. 6.
    D. L. Liao, C. A. Badour, and B. Q. Liao. J. Photochem. Photobiol. A, 2008, 194(1), 11–19.CrossRefGoogle Scholar
  7. 7.
    Y. S. Chang, Y. H. Chang, I. G. Chen, G. J. Chen, and Y. L. Chai. J. Cryst. Growth., 2002, 243(2), 319–326.CrossRefGoogle Scholar
  8. 8.
    S. Sen, M. L. Ram, S. Roy, and B. K. Sarkar. J. Mater. Res., 1999, 14(03), 841–848.CrossRefGoogle Scholar
  9. 9.
    J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, and P. Wu. Surface Coat. Technol. Alert., 2009, 204(1), 205–214.CrossRefGoogle Scholar
  10. 10.
    A. I. Sheinkman, F. P. Sheinkman, and I. P. Dobrovol’skii. Izv. ANSSSR, Neorgan. Mater., 1977, 13(8), 1447–50.Google Scholar
  11. 11.
    M. H. Liao, C. H. Hsu, and D. H. Chen. J. Solid State Chem., 2006, 179, 2020–2026.CrossRefGoogle Scholar
  12. 12.
    O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu. J. Am. Ceram. Soc., 1987, 70, 97/98.Google Scholar
  13. 13.
    R. K. Datta. Final Report under US Department of Energy Contract No. DE-AP21-93MC53415. Virginia Polytechnic Institute, State University, Blacksburg, VA, 24060, 1994.Google Scholar
  14. 14.
    Dong Qian, L. Gerward, and J. Z. Jiang. J. Mater. Sci., 2004, 39, 5389–5392.CrossRefGoogle Scholar
  15. 15.
    Iwasaki Mitsunobu, Yoichi Inubushi, and Seishiro Ito. J. Mater. Soi. Lett., 1997, 16(18), 1503–1505.CrossRefGoogle Scholar
  16. 16.
    C. C. Chen, J. F. Liu, P. Liu, and B. H. Yu. Adv. Chem. Eng. Sci., 2011, 1, 9–14.CrossRefGoogle Scholar
  17. 17.
    P. K. Giri, S. Bhattacharyya, K. Dilip Singh, R. Kesavamoorthy, B. K. Panigrahi, and K. G. M. Nair. J. Appl. Phys., 2007, 102(9), 093515.CrossRefGoogle Scholar
  18. 18.
    S. Begin-Colin, T. Girot, G. Le Caër, and A. Mocellin. J. Solid State Chem., 2000, 149, 41.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nanotechnology and Advanced Materials Program, Energy and Building Research CenterKuwait Institute for Scientific ResearchSafatKuwait

Personalised recommendations