Journal of Structural Chemistry

, Volume 60, Issue 5, pp 810–814 | Cite as

Synthesis and Crystal Structure of Nickel(II) and Zinc(II) Complexes with O-Propylxanthate and N, N, N′,N′-Tetramethylethylenediamine

  • A. M. QadirEmail author
  • N. Dege


The reaction of NiCl2·6H2O or Zn(CH3CO2)·2H2O with potassium O-propylxanthate (KS2COC3H7) and N, N, N′,N′-tetramethylethylenediamine (tmeda) affords monomeric complexes of the formula [M(S2COC3H7)2(tmeda)] (M = Ni(II) 1; Zn(II) 2). Both complexes are characterized by single crystal X-ray diffraction, elemental analysis, IR spectroscopy. Complexes 1 and 2 crystalize in monoclinic P21/c and I2/a space groups, respectively. Each metal center is ligated by four S atoms from xanthate ligands and two N atoms from tmeda in a distorted octahedral geometry.


xanthate complex X-ray Zn(II) synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Andotra, S. Kumar, M. Kour, Vikas, Chayawan, V. Sharma, S. Jaglan, and S. K. Pandey. Spectrochim. Acta A, 2017, 180, 127–137.CrossRefGoogle Scholar
  2. 2.
    A. M. Qadir. Transit. Met. Chem., 2017, 42, 35–39.CrossRefGoogle Scholar
  3. 3.
    M. A. Buckingham, A. L. Catherall, M. S. Hill, A. L. Johnson, and J. D. Parish. Cryst. Growth Des., 2017, 17, 907–912.CrossRefGoogle Scholar
  4. 4.
    K. R. Chaudhari, S. Dey, A. P. Wadawale, and V. K. Jain. Organomet. Chem., 2016, 813, 119–124.CrossRefGoogle Scholar
  5. 5.
    M. Akhtar, N. Revaprasadu, M. A. Malik, and J. Raftery. J. Mater. Sci. Semicond. Process, 2015, 30, 368–375.CrossRefGoogle Scholar
  6. 6.
    A. L. Johnson, M. S. Hill, G. Kociok-Köhn, K. C. Molloy, and A. L. Sudlow. Inorg. Chem. Commun., 2014, 49, 8–11.CrossRefGoogle Scholar
  7. 7.
    J. Cusack, M. G. B. Drew, and T. R. Spalding. Polyhedron, 2014, 23, 2315–2321.CrossRefGoogle Scholar
  8. 8.
    J. M. Clark, G. Kociok-Köhn, N. J. Harnett, M. S. Hill, R. Hill, K. C. Molloy, H. Saponia, D. Stanton, and A. Sudlow. Dalton. Trans., 2011, 40, 6893–6900.CrossRefGoogle Scholar
  9. 9.
    M. Al-Shakban, P. D. Matthews, G. Deogratias, P. D. Mcnaughter, J. Raftery, I. V. Yrezaba, E. B. Mubofu, and P. O’Brien. Inorg. Chem., 2017, 56, 9247–9254.CrossRefGoogle Scholar
  10. 10.
    N. Alam, M. S. Hill, G. Kociok-Köhn, M. Zeller, M. Mazhar, and K. C. Molloy. Chem. Mater., 2008, 20, 6157–6162.CrossRefGoogle Scholar
  11. 11.
    J. Schmitt and N. Blanchard. J. Polym. Chem., 2011, 2, 2231–2238.CrossRefGoogle Scholar
  12. 12.
    S. Perrier and P. Takopuckdee. J. Polym. Sci. Part A, 2005, 43, 5347–5393.CrossRefGoogle Scholar
  13. 13.
    A. Krezel and W. Maret. Arch. Biochem. Biophys., 2016, 611, 3–19.CrossRefGoogle Scholar
  14. 14.
    K. Jurowski, B. Szewczyk, G. Nowakand, and W. Piekoszewski. J. Bio. Inorg. Chem., 2014, 19, 1069–1079.CrossRefGoogle Scholar
  15. 15.
    W. N. Lipscomb and N. Strater. Chem. Rev., 1996, 96, 2375–2434.CrossRefGoogle Scholar
  16. 16.
    D. E. Wilcox. Chem. Rev., 1996, 96, 2435–2458.CrossRefGoogle Scholar
  17. 17.
    N. Strater, W. N. Lipscomb, T. Klabundeand, and B. Krebs. Angew. Chem. Int. Edit., 1996, 35, 2024–2055.CrossRefGoogle Scholar
  18. 18.
    H. Steinhagen and G. Helmchem. Angew. Chem. Int. Edit., 1996, 35, 2339–2342.CrossRefGoogle Scholar
  19. 19.
    N. Selvakumaran, A. Pratheepkumar, S. W. Ng, E. R. T. Tiekink, and R. Karvembu. Inorg. Chim. Acta, 2013, 404, 82–87.CrossRefGoogle Scholar
  20. 20.
    R. Sachar and S. Kapoor. Orient. J. Chem., 2009, 25, 1133–1136.Google Scholar
  21. 21.
    G. M. Sheldrick. Acta Cryst., 2015, A64, 112–122.Google Scholar
  22. 22.
    R. F. Klevtsova, T. G. Leonova, L. A. Glinskaya, and V. Larionov. J. Struc. Chem., 2006, 47, 504–512.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceSalahaddin UniversityErbilIraq
  2. 2.Science Faculty, Department of PhysicsUniversity of OndokuzmayısSamsunTurkey

Personalised recommendations